Abstract
Exhaust heat recovery ventilation systems conserve energy through enthalpy recovery between air intake and exhaust, and they are being increasingly used. An exhaust heat recovery ventilation system can be installed in the ceiling of a balcony or emergency evacuation space. However, in the case of fire, the emergency evacuation space has to by law remain as empty space, and therefore, a ventilation system can't be installed in an emergency evacuation space. Therefore, the need for a proper installation space for a ventilation system is emphasized. In this study, to install a heat recovery ventilation system in a lightweight wall, a heat exchanger was assembled of thickness below 140 mm. The efficiency of heat recovery was analyzed through performance experiment, in the case of the cooling and heating mode. The heat recovery efficiency increases when the surface area is increased, by using closer channel spacing in the heat exchanger, or by increasing the size of the heat exchanger.