References
- P. Bernhard, "Survey of linear quadratic robust control," Macroeconomic Dynamics, vol. 6, pp. 19-39, 2002. https://doi.org/10.1017/S1365100502027037
- V. L. Kharitonov, "Asymptotic stability of an equilibrium position of a family of systems linear differential equations," Differential'nye Uraveniya, vol. 14, no. 11, pp. 1483-1485, 1978.
- V. L. Kharitonov, "On a generalization of a stability criterion," Akademii nauk Kahskoi SSR, Fiziko-Matenaticheskaia, vol. 1, pp. 53-57, 1978.
- B. R. Barmish, "New tools for robustness analysis," Proc. 27th IEEE CDC, pp. 1-6, 1988.
- H. Chapellat and S. P. Bhattacharyya, "A generalization of Kharitonov's theorem: Robust stability of interval plants," IEEE Trans. Automat. Contr., vol. 34, no. 3, pp. 306-311, 1989. https://doi.org/10.1109/9.16420
- D. S. Bernstein and W. M. Haddad, "Robust controller synthesis using Kharitonov's theorem," IEEE Trans. Automat. Contr., vol. 37, no. 1, pp. 129-132, 1992. https://doi.org/10.1109/9.109648
- R. Toscano and P. Lyonnet, "Robust static output feedback controller synthesis using Kharitonov's theorem and evolutionary algorithm," Information Sciences, vol. 180, pp. 2023-2028, 2010. https://doi.org/10.1016/j.ins.2010.01.009
- Y. J. Huang and Y.-J. Wang, "Robust PID tuning strategy for uncertain plants based on the Kharitonov's theorem," ISA Transactions, vol. 39, pp. 419-431, 2000. https://doi.org/10.1016/S0019-0578(00)00026-4
- N. Tan I. Kaya, C. Yeroglu, and D. P. Atherton, "Computation of stabilizing PI and PID controllers using the stability boundary locus," Energy Conversion and Management, vol. 47. no. 18-19, pp. 3045-3058. 2006. https://doi.org/10.1016/j.enconman.2006.03.022
- Y. V. Hote, J. R. P. Gupta, and D. R. Choudhury, "Kharitonov's theorem and Routh criterion for stability margin of interval systems," Int. J. Control, Automation, and Systems, vol. 8, no. 3, pp. 647-654, 2010. https://doi.org/10.1007/s12555-010-0318-1
- T. Meressi, D. Chen, and B. Paden, "Application of Kharitonov's theorem to mechanical systems," IEEE Trans. Automat. Contr., vol. 38, no. 3, pp. 488-491, 1993. https://doi.org/10.1109/9.210153
- D. Czarkowski, L. R. Pujara, and M. K. Kazimierczuk, "Robust stability of state-feedback control of PWM DC-DC push-pull converter," IEEE Trans. Ind. Electronics, vol. 42, no. 1, pp. 108-111, 1995. https://doi.org/10.1109/41.345854
- Y. V. Hote, D. R. Roy, and J. R. P. Gupta, "Robust stability analysis of the PWM push-pull DC-DC converter," IEEE Trans. Power Electronics, vol. 24, no. 10, pp. 2353-2356, 2009. https://doi.org/10.1109/TPEL.2009.2014132
- G. Rigatos and P. Siano, "Design of robust electric power system stablilizers using Kharitonov's theorem," Mathematics and Computers in Simulation, vol. 82, no. 1, pp. 181-191, 2011. https://doi.org/10.1016/j.matcom.2010.07.008
- A. C. Bartlett, C. V. Hollot, and H. Lin, "Root locations of an entire polynomials: It suffices to check the edges," Mathematics of Control, Singnals and Systems, vol. 1, pp. 61-71, 1989.
- M. Fu and B. R. Barmish, "Polytopes of polynomials with zeros in a prescribed set," IEEE Trans. Automat. Contr., vol. 34, no. 5, pp. 544-546, 1989. https://doi.org/10.1109/9.24210
- D. Henrion and V. Kucera, "Positive polynomials and robust stabilization with fixed-order controllers," IEEE Trans. Automat. Contr., vol. 48, no. 7, pp. 1178-1186, 2003. https://doi.org/10.1109/TAC.2003.814103
-
M. Chilali and P. Gahinet, "
$H_{\infty}$ design with pole placement constraints: An LMI approach," IEEE Trans. Automat. Contr., vol. 41, no. 3, pp. 358-367, 1996. https://doi.org/10.1109/9.486637 - D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou, "A new robust D-stability condition for real convex polytopic uncertainty," Systems & Control Letters, vol. 40, no. 1, pp. 21-30, 2000. https://doi.org/10.1016/S0167-6911(99)00119-X
- S. Gutman and E. J. Jury, "A general theory for matrix root clustering in subregions of the complex plane," IEEE Trans. Automat. Contr., vol. 26, no. 4, pp. 853-863, 1981. https://doi.org/10.1109/TAC.1981.1102764
- Wikipedia, Lyapunov Function, http://en.wikipedia.org/wiki/Lyapunov_function.
- C.-T. Chen, Linear System Theory and Design(3rd Ed.), Oxford University Press, 1999.
- K. Zhou, J. C. Doyle, K. Glover, Robust and Optimal Control, Prentice-Hall, Englewood Cliffs, NJ, 1996.
- S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Applied Mathematics, 1994.
- J. C. Geromel, P. L. D. Peres, and J. Bernussou, "On a convex parameter space method for linear control design of uncertain systems," SIAM J. Control Opt., vol. 29, pp. 381-402, 1991. https://doi.org/10.1137/0329021
- P. Gahinet, P. Apkarian, and M. Chilali, "Affine parameter- dependent Lyapunov functions and real parametric uncertainty," IEEE Trans. Automat. Contr., vol. 41, no. 3, pp. 436-442, 1996. https://doi.org/10.1109/9.486646
- T. Mori and H. Kokame, "A parameter-dependent Lyapunov function for a polytope of matrices," IEEE Trans. Automat. Contr., vol. 45, no. 8, pp. 1516-1519, 2000. https://doi.org/10.1109/9.871762
- D. C. W. Ramos and P. L. D. Peres, "An LMI condition for the robust stability of uncertain continuous-time linear systems," IEEE Trans. Automat. Contr., vol. 47, no. 4, pp. 675-678, 2002. https://doi.org/10.1109/9.995048
- R. C. L. F. Oliveira and P. L. D. Peres, "Stability of polytope of matrices via affine parameter-dependent Lyapunov functions: Asymptotically exact LMI condition," Linear Algebra and its Applications, vol. 405, pp. 209-228, 2005. https://doi.org/10.1016/j.laa.2005.03.019
- R. C. L. F. Oliveira and P. L. D. Peres, "LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions," Systems & Control Letters, vol. 55, no. 1, pp. 52-61, 2006. https://doi.org/10.1016/j.sysconle.2005.05.003
- R. C. L. F. Oliveira and P. L. D. Peres, "Parameter-dependent LMIs in robust analysis: Characterization of Homogeneous polynomially parameter-dependent solutions via LMI relaxations, IEEE Trans. Automat. Contr., vol. 52, no. 7, pp. 1334-1340, 2007. https://doi.org/10.1109/TAC.2007.900848
- E. Feron, P. Apkarian, and P. Gahinet, "Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions," IEEE Trans. Automat. Contr., vol. 41, pp. 1041-1046, 1996. https://doi.org/10.1109/9.508913
- M. C. de Oliveira, J. Bernussou, and J. C. Geromel, "A new discrete-time robust stability condition," Systems & Control Letters, vol. 37, no. 4, pp. 261-265, 1999. https://doi.org/10.1016/S0167-6911(99)00035-3
- D. H. Lee, J. B. Park, Y. H. Joo, and K. C. Lin, "Lifted versions of robust D-stability and D-stabilisation conditions for uncertain polytopic linear systems," IET Control Theory and Applications, vol. 6, no. 1, pp. 24-36, 2012. https://doi.org/10.1049/iet-cta.2010.0197
-
P. P. Khargonekar, I. R. Petersen, and K. Zhou, "Robust stabilization of uncertain linear systems: Quadratic stabilizability and
$H_{\infty}$ control theory," IEEE Trans. Automat. Contr., vol. 35, no. 3, pp. 356-361, 1990. https://doi.org/10.1109/9.50357 - B. R. Barmish, "Necessary and sufficient conditions for quadratic stabilizability of an uncertain system," J. Opt. Theory & Applications, vol. 46, no. 4, pp. 399-408, 1985. https://doi.org/10.1007/BF00939145
- Y. Wang, L. Xie, and C. E. de Souza, "Robust control of a class of uncertain nonlinear systems," Systems & Control Letters, vol. 19, no. 2, pp. 139-149, 1992. https://doi.org/10.1016/0167-6911(92)90097-C
- E. T. Jeung, D. C. Oh, J. H. Kim, and H. B. Park, "Robust controller design for uncertain systems with time delays: LMI approach," Automatica, vol. 32, no. 8, pp. 1229-1231. 1996. https://doi.org/10.1016/0005-1098(96)00055-6
- J. H. Kim, E. T. Jeung, and H. B. Park, "Robust control for parameter uncertain delay systems in state and control input," Automatica, vol. 32, no. 9, pp. 1337-1339. 1996. https://doi.org/10.1016/0005-1098(96)00074-X
- X. Li and C. E. de Souza, "Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach," IEEE Trans. Automat. Contr., vol. 42, no. 8, pp. 1144-1148, 1997. https://doi.org/10.1109/9.618244
-
Y.-Y. Cao and J. Lam, "Robust
$H_{\infty}$ control of uncertain Markovian jump systems with time-delay," IEEE Trans. Automat. Contr., vol. 45, no. 1, pp. 77-83, 2000. https://doi.org/10.1109/9.827358 - S. Xu, P. V. Dooren, R. Stefan, and J. Lam, "Robust stability and stabilization for singular systems with state delay and parameter uncertainty," IEEE Trans. Automat. Contr., vol. 47, no. 7, pp. 1122-1128, 2002. https://doi.org/10.1109/TAC.2002.800651
- G. Zames, "Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses," IEEE Trans. Automat. Contr., vol. 26, no. 2, pp. 301-320, 1981. https://doi.org/10.1109/TAC.1981.1102603
- J. Doyle and G. Stein, "Multivariable feedback design: Concepts for a classical/modern synthesis," IEEE Trans. Automat. Contr., vol. 26, no. 1, pp. 4-16, 1981. https://doi.org/10.1109/TAC.1981.1102555
-
B. A. Francis, A Course in
$H_{\infty}$ Control Theory, vol. 88, Lecture Notes in Control and Information Science, New-York, Springer-Verlag, 1987. -
J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, "State space solutions to standard
$H_2$ and$H_{\infty}$ control problems," IEEE Trans. Automat. Contr., vol. 34, no. 8, pp. 831-847, 1989. https://doi.org/10.1109/9.29425 - P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, Matlab LMI Control Toolbox, Mathworks, 1995.
-
P. Gahinet and P. Apkarian, "A linear matrix inequality approach to
$H_{\infty}$ control," Int. J. Robust and Nonlinear Contr., vol. 4, no. 4, pp. 421-448, 1994. https://doi.org/10.1002/rnc.4590040403 -
T. Iwasaki and R. E. Skelton, "All controllers for the general
$H_{\infty}$ control problem: LMI existence conditions and state-space formulas," Automatica, vol. 30, no. 8, pp. 1307-1317, 1994. https://doi.org/10.1016/0005-1098(94)90110-4 -
P. P. Khargonekar and M. A. Rotea, "Mixed
$H_2/H_{\infty}$ control: A convex optimization approach," IEEE Trans. Automat. Contr., vol. 36, no. 7, pp. 824-837, 1991. https://doi.org/10.1109/9.85062 - J. C. Doyle, "Structured uncertainty in control system design," Proc. 24th CDC, FL, pp. 260-265, 1985.
-
L. Xie, "Output feedback
$H_{\infty}$ control of systems with parameter uncertainty," Int. J. Control, vol. 63, no. 4, pp. 741-750, 1996. https://doi.org/10.1080/00207179608921866