DOI QR코드

DOI QR Code

Intelligent Control: Its Identity and Some Noticeable Techniques

지능제어: 정체성 고찰과 주요 기법의 전망

  • Bien, Z. Zenn (Department of Electrical Engineering, KAIST) ;
  • Suh, Il Hong (Department of Electronic Engineering, Hanyang University)
  • 변증남 (KAIST 전기 및 전자공학과) ;
  • 서일홍 (한양대학교 서울캠퍼스 공과대학 융합전자공학부)
  • Received : 2014.01.24
  • Accepted : 2014.02.03
  • Published : 2014.03.01

Abstract

Referring to various definitions, we first examine the identity issue of intelligent control and, have tried to explain the nature and attributes of intelligent control in terms of two categories of positions, that is, the Noumenalist's position and the Phenomenologist's position. And then, we give detailed descriptions for (1) FUZZY-based intelligent control and (2) learning control. Finally, as a noticeable new technique of intelligent control for robotic applications, we present (3) Cognitive control.

Keywords

References

  1. K. S. Fu, "Learning control systems and intelligent control systems: An intersection of artificial intelligence and automatic control," IEEE Trans. on Automatic Control, AC-16, 1971.
  2. D. A. White and D. A. Sofge, Handbook of Intelligent Control; Neural, Fuzzy and Adaptive Approaches, Van Nostrand Reinhold, 1992.
  3. K. M. Passino, "Bridging the gap between conventional and intelligent control," Control Systems, IEEE, vol. 13, no. 3, pp. 12-18, 1993. https://doi.org/10.1109/37.214940
  4. G. A. Bekey, "Autonomous robots: From biological inspiration to implementation and control," The MIT Press 2005.
  5. P. J. Antsaklis, "Intelligent control, encyclopedia of electrical and electronics engineering," vol. 10, pp. 493-503, John Wiley & Sons, Inc., 1999.
  6. G. N. Saridis, "Toward the realization of intelligent controls," Proc. IEEE 67 (1979).
  7. Z. Bien, W.-C. Bang, D.-Y. Kim, and J.-S. Han, "Macnine intelligence quotient: Its (MIQ) measurements and applications," fuzzy sets and systems, vol. 127, pp. 3-16, 2002. https://doi.org/10.1016/S0165-0114(01)00149-X
  8. J. Gerard Wolff, "The SP Theory of Intelligence: Benefits and Applications," Information 2014, 5, pp. 1-27.
  9. Bien, Zeungnam, Fuzzy Logic Control (in Korean), Hongreung Science Book Publishers, 1999.
  10. C. J. Harris, Advances in Intelligent Control, Taylor & Francis 1994.
  11. C. W, de Silva, Intelligent Control: Fuzzy Logic Applications, CRC Press Inc., 1995.
  12. L. A. Zadeh, "A theory of approximate reasoning," in Machine Intelligence, vol. 9, J. Hayes, et al. (ed) New York, Halstead Press 149-194, 1979.
  13. L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353.
  14. Z. Bien, Y.-J. Lee, S.-H. Lee, K.-H. Shim, and S.-W. Bang, "A new benchmark system for evaluation of intelligent controllers: an yo-yo system," Proc. of the 4th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE/IFES '95), Yokohama, Japan, vol. 3, pp. 1361-66, Mar. 1995.
  15. C. J. Harris, C. G. Moore, and M. Brown, Intelligent Control: Aspects of Fuzzy Logic and Neural Nets, World Scientific 1993 (Chapter 5).
  16. K. M. Passino and S. Yurkovich, Fuzzy Control, Addison-Wesley, pp. 301-390, 1998.
  17. M. Sugeno and G. T. Gang Fuzzy Modeling and Control of Multilayer Incinerator, Fuzzy Sets and Systems 18, 329=461986. https://doi.org/10.1016/0165-0114(86)90010-2
  18. H.-C. Myung, Z. Z. Bien, and Y.-T. Kim, Stabilization of Direct Adaptive Fuzzy Control Systems: Two Approaches, Fuzzy Control - Synthesis and Anlysis (Shehu S. et al.ed) WILEY, 2000.
  19. J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice-Hall,1997.
  20. Z. Bien and W.-K. Song, "Blend of soft computing techniques for effective human-machine interaction in service robotic systems," Fuzzy Sets and Systems, vol. 134, pp. 5-25, 2003. https://doi.org/10.1016/S0165-0114(02)00227-0
  21. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, 1991.
  22. J. M. Mendel, http://sipi.usc.edu/-mendel.report
  23. A. M. Meystel and J. S. Albus, Intelligent Systems: Architecture, Design, and Control, Wiley, 2002.
  24. Y. Z. Tsypkin, "Adaptation, learning, and self-learning in automatic systems," Automat. Remote Control (USSR), vol. 27, no. 1, 1966.
  25. S. W. Lee, O. Prenzel, and Z. Bien, "Applying human learning principles to user-centered IoT systems," Computer (Flagship publication of IEEE Computer Society), vol. 46, no. 2, pp. 46-52, Feb. 2013.
  26. P. J. Antsakliks, "Intelligent learning control," IEEE Control Systems, vol. 15, no. 3, pp. 5-7, Jun. 1995.
  27. Y.-T. Kim and Z. Bien, "Robust self-learning fuzzy controller design for a class of nonlinear MIMO systems," Fuzzy Sets and Systems, vol. 111, pp. 117-135, 2000. https://doi.org/10.1016/S0165-0114(98)00042-6
  28. H.-E. Lee, Y.-M. Kim, and Z. Zenn Bien, "Intelligent human behavior learning system for smart home," International Conference on Human-Computer Interaction, Las Vegas, USA, 2005.
  29. H.-E. Lee, K.-H. Park, and Z. Z. Bien, "Iterato construct Probabilistic Fuzzy rule base from Numerical Data," IEEE Transactions on Fuzzy Systems, 2007.
  30. Z. Bien and J. X. Xu(ed), Iterative Learning Control: Analysis, Design, Integration and Appli Cations, Kluwer Academic Publishers, 1998.
  31. K.-H. Park and Z. Bien, "Intervalized iterative learning control for monotone convergence in the sense of sup-norm," International Journal of Control, vol. 78, no. 15, 2005.
  32. X. Ruan, Z. Bien, and K.-H. Park, "Decentralized iterative learning control to large-scale industrial processes for nonrepetitive trajectory tracking," IEEE Tr. on SMC-Part A, vol. 38, no. 1, 238-252, 2008.
  33. Z. Bien and K. M. Huh, "Higher-order iterative learning control algorithm," IEE Proceedings, vol. 136, no. 3, pp. 105-112, May 1989. https://doi.org/10.1049/ip-d.1989.0016
  34. I. H. Suh, Y. B. Park, G. Zhang, S. H. Lee, and W. Y. Kwon, "Homosapiens and Cognitive Robot," Korea Journal of Information Science, vol. 30, no. 12, Dec. 2012.
  35. R. C. Arkin, Behavior-based Robotics, MIT Press, 1998.
  36. Hinton, G. E., Osindero, S. and Teh, Y, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp 1527-1554, 2006. https://doi.org/10.1162/neco.2006.18.7.1527
  37. S. Schaal, "Is imitation learning the route to humanoid robots?" Trends in Cognitive Sciences, vol. 3, no. 6, pp. 233-242, 1999. https://doi.org/10.1016/S1364-6613(99)01327-3
  38. G. H. Lim, I. H. Suh, and H. Suh, "Ontology-based unified robot knowledge for service robots in indoor environments," IEEE Trans. On SMC, Part A, vol. 41, no. 3, pp. 492-509, 2011.
  39. L. Atzori, A. Lera, and G. Morabito, "The Internet of Things: A Survey," Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010. https://doi.org/10.1016/j.comnet.2010.05.010
  40. M. Buss, S. Hirche, and T. Samad, "Cognitive Control," The Impact of Control Technology, IEEE Control Systems Society, 2011.
  41. M. Hjelm, C. H. Ek, R. Detry, and K. Renaud, "Sparse summarization of robotic grasp data," Proc of IEEE International Conference on Robotics and Automation, 2013.
  42. I. H. Suh, S. H. Lee, J. P. Hwang, and G. N. Han, "Task Skill Learning based on Imitation," The Journal of Korea Robotics Society, vol. 8, no. 4, Oct. 2011.
  43. S. K. Tso and K. P. Liu, "Hidden Markov model for intelligent extraction of robot trajectory command from demonstrated trajectories," Proc. of IEEE ICIT, pp. 294-298, 1996.
  44. J. Yang, Y. Xu, and C. S. Chen, "Human action learning via hidden markov model," IEEE Trans. Syst. Man Cyb., vol. 27, no. 1, pp. 34-44, 1997. https://doi.org/10.1109/3468.553220
  45. D. Lee and Y. Nakamura, "Stochastic model of imitating a new observed motion based on the acquired motion primitives," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4994-5000, 2006.
  46. S. Calinon and A. Billard, "Learning of gestures by imitation in a humanoid robot," imitation and social learning in robots, humans and animals: behavioural, social and communicative dimensions, Cambridge Univ. Press, pp. 153-177, 2007.
  47. S. Calinon, F. Guenter, and A. Billard, "On learning, representing, and generalizing a task in a humanoid robot," IEEE Trans. on SMC, Part B, 2007.
  48. S. H. Lee, I. H. Suh, S. Calinon, and R. Johansson, "Learning basis skills by autonomous segmentation of humanoid motion trajectories," Proc. of IEEE International Conference on Humanoid Robots, pp. 112-119, 2012.
  49. S. Calinon, F. Guenter, and A. Billard, "Goal-directed imitation in a humanoid robot," Proc of IEEE International Conference on Robotics and Automation, pp. 299-304, 2005.
  50. S. H. Lee, G. N. Han, and I. H. Suh, "Skill learning using temporal and spatial entropies for accurate skill acquisition," Proc of IEEE International Conference on Robotics and Automation, pp. 1323-1330, 2013.
  51. K. Friston, "The free-energy principle: a unified brain theory?", Nature, vol. 11, no. 2, pp. 127-138, 2010.
  52. K. Friston, "The history of the future of the Bayesian brain," NeuroImage, vol. 62, no. 2, pp. 1230-1233, 2012. https://doi.org/10.1016/j.neuroimage.2011.10.004
  53. Y. Yamashita and J. Tani, "Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment," PLoS Computational Biology, vol. 4, no. 11, e1000220, 2008. https://doi.org/10.1371/journal.pcbi.1000220
  54. J. Tani, M. Ito, and Y. Sugita, "Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB," Neural Networks, vol. 17, no. 8-9, pp. 1273-1289, 2004. https://doi.org/10.1016/j.neunet.2004.05.007
  55. R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, Cambridge University Press, 1998.
  56. H. R. Beom and H. S. Cho, "A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning," Systems, Man and Cybernetics, IEEE Transactions on, vol. 25, no. 3, pp. 464-477, 1995. https://doi.org/10.1109/21.364859
  57. J. Morimoto, G. Cheng, C. G. Atkeson, and G. Zeglin, "A simple reinforcement learning algorithm for biped walking," in Robotics and Automation, 2004. Proc. of 2004 IEEE International Conference on Robotics and Autonomation, vol. 3, pp. 3030-3035, 2004.
  58. J. Peters, S. Vijayakumar, and S. Schaal, "Reinforcement learning for humanoid robotics," Proc. of the Third IEEE-RAS International Conference on Humanoid Robots, pp. 1-20, 2003.
  59. S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, "Learning movement primitives," in Robotics Research, Springer, pp. 561-572, 2005.
  60. F. Stulp and S. Schaal, "Hierarchical reinforcement learning with movement primitives," Proc. of 11th IEEE-RAS International Conference on Humanoid Robots, pp. 231-238, 2011.
  61. J. Peters and S. Schaal, "Reinforcement learning of motor skills with policy gradients," Neural Networks, vol. 21, no. 4, pp. 682-697, 2008. https://doi.org/10.1016/j.neunet.2008.02.003
  62. S. Schaal, "Dynamic movement primitives-a framework for motor control in humans and humanoid robotics," in Adaptive Motion of Animals and Machines, Springer, pp. 261-280, 2006.
  63. P. Pastor, H. Homann, T. Asfour, and S. Schaal, "Learning and generalization of motor skills by learning from demonstration," Proc. of IEEE International Conference on Robotics and Automation, pp. 763-768, 2009.
  64. E. Theodorou, J. Buchli, and S. Schaal, "Learning policy improvements with path integrals," Proc. of International Conference on Artificial Intelligence and Statistics, pp. 828-835, 2010.
  65. H. J. Kappen, "An introduction to stochastic control theory, path integrals and reinforcement learning," Proc. of AIP Conference, vol. 887, p. 149, 2007.
  66. G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006. https://doi.org/10.1126/science.1127647
  67. K.-H. Park, Z. Bien, et.al, "Robotic smart house to assist people with movement disabilities," Autonomous Robot, vol. 22, pp. 183-198, 2007. https://doi.org/10.1007/s10514-006-9012-9