References
- K. S. Fu, "Learning control systems and intelligent control systems: An intersection of artificial intelligence and automatic control," IEEE Trans. on Automatic Control, AC-16, 1971.
- D. A. White and D. A. Sofge, Handbook of Intelligent Control; Neural, Fuzzy and Adaptive Approaches, Van Nostrand Reinhold, 1992.
- K. M. Passino, "Bridging the gap between conventional and intelligent control," Control Systems, IEEE, vol. 13, no. 3, pp. 12-18, 1993. https://doi.org/10.1109/37.214940
- G. A. Bekey, "Autonomous robots: From biological inspiration to implementation and control," The MIT Press 2005.
- P. J. Antsaklis, "Intelligent control, encyclopedia of electrical and electronics engineering," vol. 10, pp. 493-503, John Wiley & Sons, Inc., 1999.
- G. N. Saridis, "Toward the realization of intelligent controls," Proc. IEEE 67 (1979).
- Z. Bien, W.-C. Bang, D.-Y. Kim, and J.-S. Han, "Macnine intelligence quotient: Its (MIQ) measurements and applications," fuzzy sets and systems, vol. 127, pp. 3-16, 2002. https://doi.org/10.1016/S0165-0114(01)00149-X
- J. Gerard Wolff, "The SP Theory of Intelligence: Benefits and Applications," Information 2014, 5, pp. 1-27.
- Bien, Zeungnam, Fuzzy Logic Control (in Korean), Hongreung Science Book Publishers, 1999.
- C. J. Harris, Advances in Intelligent Control, Taylor & Francis 1994.
- C. W, de Silva, Intelligent Control: Fuzzy Logic Applications, CRC Press Inc., 1995.
- L. A. Zadeh, "A theory of approximate reasoning," in Machine Intelligence, vol. 9, J. Hayes, et al. (ed) New York, Halstead Press 149-194, 1979.
- L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353.
- Z. Bien, Y.-J. Lee, S.-H. Lee, K.-H. Shim, and S.-W. Bang, "A new benchmark system for evaluation of intelligent controllers: an yo-yo system," Proc. of the 4th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE/IFES '95), Yokohama, Japan, vol. 3, pp. 1361-66, Mar. 1995.
- C. J. Harris, C. G. Moore, and M. Brown, Intelligent Control: Aspects of Fuzzy Logic and Neural Nets, World Scientific 1993 (Chapter 5).
- K. M. Passino and S. Yurkovich, Fuzzy Control, Addison-Wesley, pp. 301-390, 1998.
- M. Sugeno and G. T. Gang Fuzzy Modeling and Control of Multilayer Incinerator, Fuzzy Sets and Systems 18, 329=461986. https://doi.org/10.1016/0165-0114(86)90010-2
- H.-C. Myung, Z. Z. Bien, and Y.-T. Kim, Stabilization of Direct Adaptive Fuzzy Control Systems: Two Approaches, Fuzzy Control - Synthesis and Anlysis (Shehu S. et al.ed) WILEY, 2000.
- J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice-Hall,1997.
- Z. Bien and W.-K. Song, "Blend of soft computing techniques for effective human-machine interaction in service robotic systems," Fuzzy Sets and Systems, vol. 134, pp. 5-25, 2003. https://doi.org/10.1016/S0165-0114(02)00227-0
- Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, 1991.
- J. M. Mendel, http://sipi.usc.edu/-mendel.report
- A. M. Meystel and J. S. Albus, Intelligent Systems: Architecture, Design, and Control, Wiley, 2002.
- Y. Z. Tsypkin, "Adaptation, learning, and self-learning in automatic systems," Automat. Remote Control (USSR), vol. 27, no. 1, 1966.
- S. W. Lee, O. Prenzel, and Z. Bien, "Applying human learning principles to user-centered IoT systems," Computer (Flagship publication of IEEE Computer Society), vol. 46, no. 2, pp. 46-52, Feb. 2013.
- P. J. Antsakliks, "Intelligent learning control," IEEE Control Systems, vol. 15, no. 3, pp. 5-7, Jun. 1995.
- Y.-T. Kim and Z. Bien, "Robust self-learning fuzzy controller design for a class of nonlinear MIMO systems," Fuzzy Sets and Systems, vol. 111, pp. 117-135, 2000. https://doi.org/10.1016/S0165-0114(98)00042-6
- H.-E. Lee, Y.-M. Kim, and Z. Zenn Bien, "Intelligent human behavior learning system for smart home," International Conference on Human-Computer Interaction, Las Vegas, USA, 2005.
- H.-E. Lee, K.-H. Park, and Z. Z. Bien, "Iterato construct Probabilistic Fuzzy rule base from Numerical Data," IEEE Transactions on Fuzzy Systems, 2007.
- Z. Bien and J. X. Xu(ed), Iterative Learning Control: Analysis, Design, Integration and Appli Cations, Kluwer Academic Publishers, 1998.
- K.-H. Park and Z. Bien, "Intervalized iterative learning control for monotone convergence in the sense of sup-norm," International Journal of Control, vol. 78, no. 15, 2005.
- X. Ruan, Z. Bien, and K.-H. Park, "Decentralized iterative learning control to large-scale industrial processes for nonrepetitive trajectory tracking," IEEE Tr. on SMC-Part A, vol. 38, no. 1, 238-252, 2008.
- Z. Bien and K. M. Huh, "Higher-order iterative learning control algorithm," IEE Proceedings, vol. 136, no. 3, pp. 105-112, May 1989. https://doi.org/10.1049/ip-d.1989.0016
- I. H. Suh, Y. B. Park, G. Zhang, S. H. Lee, and W. Y. Kwon, "Homosapiens and Cognitive Robot," Korea Journal of Information Science, vol. 30, no. 12, Dec. 2012.
- R. C. Arkin, Behavior-based Robotics, MIT Press, 1998.
- Hinton, G. E., Osindero, S. and Teh, Y, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp 1527-1554, 2006. https://doi.org/10.1162/neco.2006.18.7.1527
- S. Schaal, "Is imitation learning the route to humanoid robots?" Trends in Cognitive Sciences, vol. 3, no. 6, pp. 233-242, 1999. https://doi.org/10.1016/S1364-6613(99)01327-3
- G. H. Lim, I. H. Suh, and H. Suh, "Ontology-based unified robot knowledge for service robots in indoor environments," IEEE Trans. On SMC, Part A, vol. 41, no. 3, pp. 492-509, 2011.
- L. Atzori, A. Lera, and G. Morabito, "The Internet of Things: A Survey," Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010. https://doi.org/10.1016/j.comnet.2010.05.010
- M. Buss, S. Hirche, and T. Samad, "Cognitive Control," The Impact of Control Technology, IEEE Control Systems Society, 2011.
- M. Hjelm, C. H. Ek, R. Detry, and K. Renaud, "Sparse summarization of robotic grasp data," Proc of IEEE International Conference on Robotics and Automation, 2013.
- I. H. Suh, S. H. Lee, J. P. Hwang, and G. N. Han, "Task Skill Learning based on Imitation," The Journal of Korea Robotics Society, vol. 8, no. 4, Oct. 2011.
- S. K. Tso and K. P. Liu, "Hidden Markov model for intelligent extraction of robot trajectory command from demonstrated trajectories," Proc. of IEEE ICIT, pp. 294-298, 1996.
- J. Yang, Y. Xu, and C. S. Chen, "Human action learning via hidden markov model," IEEE Trans. Syst. Man Cyb., vol. 27, no. 1, pp. 34-44, 1997. https://doi.org/10.1109/3468.553220
- D. Lee and Y. Nakamura, "Stochastic model of imitating a new observed motion based on the acquired motion primitives," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4994-5000, 2006.
- S. Calinon and A. Billard, "Learning of gestures by imitation in a humanoid robot," imitation and social learning in robots, humans and animals: behavioural, social and communicative dimensions, Cambridge Univ. Press, pp. 153-177, 2007.
- S. Calinon, F. Guenter, and A. Billard, "On learning, representing, and generalizing a task in a humanoid robot," IEEE Trans. on SMC, Part B, 2007.
- S. H. Lee, I. H. Suh, S. Calinon, and R. Johansson, "Learning basis skills by autonomous segmentation of humanoid motion trajectories," Proc. of IEEE International Conference on Humanoid Robots, pp. 112-119, 2012.
- S. Calinon, F. Guenter, and A. Billard, "Goal-directed imitation in a humanoid robot," Proc of IEEE International Conference on Robotics and Automation, pp. 299-304, 2005.
- S. H. Lee, G. N. Han, and I. H. Suh, "Skill learning using temporal and spatial entropies for accurate skill acquisition," Proc of IEEE International Conference on Robotics and Automation, pp. 1323-1330, 2013.
- K. Friston, "The free-energy principle: a unified brain theory?", Nature, vol. 11, no. 2, pp. 127-138, 2010.
- K. Friston, "The history of the future of the Bayesian brain," NeuroImage, vol. 62, no. 2, pp. 1230-1233, 2012. https://doi.org/10.1016/j.neuroimage.2011.10.004
- Y. Yamashita and J. Tani, "Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment," PLoS Computational Biology, vol. 4, no. 11, e1000220, 2008. https://doi.org/10.1371/journal.pcbi.1000220
- J. Tani, M. Ito, and Y. Sugita, "Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB," Neural Networks, vol. 17, no. 8-9, pp. 1273-1289, 2004. https://doi.org/10.1016/j.neunet.2004.05.007
- R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, Cambridge University Press, 1998.
- H. R. Beom and H. S. Cho, "A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning," Systems, Man and Cybernetics, IEEE Transactions on, vol. 25, no. 3, pp. 464-477, 1995. https://doi.org/10.1109/21.364859
- J. Morimoto, G. Cheng, C. G. Atkeson, and G. Zeglin, "A simple reinforcement learning algorithm for biped walking," in Robotics and Automation, 2004. Proc. of 2004 IEEE International Conference on Robotics and Autonomation, vol. 3, pp. 3030-3035, 2004.
- J. Peters, S. Vijayakumar, and S. Schaal, "Reinforcement learning for humanoid robotics," Proc. of the Third IEEE-RAS International Conference on Humanoid Robots, pp. 1-20, 2003.
- S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, "Learning movement primitives," in Robotics Research, Springer, pp. 561-572, 2005.
- F. Stulp and S. Schaal, "Hierarchical reinforcement learning with movement primitives," Proc. of 11th IEEE-RAS International Conference on Humanoid Robots, pp. 231-238, 2011.
- J. Peters and S. Schaal, "Reinforcement learning of motor skills with policy gradients," Neural Networks, vol. 21, no. 4, pp. 682-697, 2008. https://doi.org/10.1016/j.neunet.2008.02.003
- S. Schaal, "Dynamic movement primitives-a framework for motor control in humans and humanoid robotics," in Adaptive Motion of Animals and Machines, Springer, pp. 261-280, 2006.
- P. Pastor, H. Homann, T. Asfour, and S. Schaal, "Learning and generalization of motor skills by learning from demonstration," Proc. of IEEE International Conference on Robotics and Automation, pp. 763-768, 2009.
- E. Theodorou, J. Buchli, and S. Schaal, "Learning policy improvements with path integrals," Proc. of International Conference on Artificial Intelligence and Statistics, pp. 828-835, 2010.
- H. J. Kappen, "An introduction to stochastic control theory, path integrals and reinforcement learning," Proc. of AIP Conference, vol. 887, p. 149, 2007.
- G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006. https://doi.org/10.1126/science.1127647
- K.-H. Park, Z. Bien, et.al, "Robotic smart house to assist people with movement disabilities," Autonomous Robot, vol. 22, pp. 183-198, 2007. https://doi.org/10.1007/s10514-006-9012-9