DOI QR코드

DOI QR Code

Screening and Characterization of LTR Retrotransposons in the genomic DNA of Pleurotus eryngii

큰느타리버섯 유전체내 LTR Retrotransposon 유전자 탐색 및 특성연구

  • Kim, Sinil (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Le, Quy Vang (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Kim, Sun-Mi (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Ro, Hyeon-Su (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
  • 김신일 (경상대학교 자연과학대학 미생물학과) ;
  • 레귀방 (경상대학교 자연과학대학 미생물학과) ;
  • 김선미 (경상대학교 자연과학대학 미생물학과) ;
  • 노현수 (경상대학교 자연과학대학 미생물학과)
  • Received : 2014.02.21
  • Accepted : 2014.03.10
  • Published : 2014.03.31

Abstract

Transposable elements (TEs) are mobile DNA elements that often cause mutations in genes and alterations in the chromosome structure. In order to identify and characterize transposable elements (TEs) in Pleurotus eryngii, a TE-enriched library was constructed using two sets of TE-specific degenerated primers, which target conserved sequences of RT and RVE domains in fungal LTR retrotransposons. A total of 256 clones were randomly chosen from the library and their insert sequences were determined. Comparative investigation of the insert sequences with those in repeat element database, Repbase, revealed that 71 of them were found to be TE-related fragments with significant similarity to LTR retrotransposons from other species. Among the TE sequences, the 70 TEs were Gypsy-type LTR retrotransposons, including 20 of MarY1 from Tricholoma matsutake, 26 of Gypsy-8_SLL from Serpula lacrymans, and 16 of RMER17D_MM from mouse, whereas a single sequence, Copia-48-PTR, was found as only Copia-type LTR retrotransposon. Southern blot analysis of the HindIII-digested P. eryngii genomic DNA showed that the retrotransposon sequences similar to MarY1 and Gypsy-8_SLL were contained as high as 14 and 18 copies per genome, respectively, whereas other retrotransposons were remained low. Moreover, both of the two Gypsy retrotransposons were expressed in full length mRNA as shown by Northern blot analysis, suggesting that they were functionally active retrotransposons.

본 연구에서는 큰느타리버섯 유전체내에 있는 retrotransposon의 탐색을 위하여 degenerated primer를 이용하여, retrotransposon library를 대장균에 제작하였다. 제작된 library에서 총 256개의 콜로니를 선택하여 염기서열을 결정한 결과, 71개가 LTR retrotransposon이며, 이들 중 70개가 Gypsy-type LTR retrotransposon임을 염기서열분석을 통하여 확인하였다. 특히 송이에서 발견된 MarY1_TM과 진황녹슨버짐버섯의 Gypsy-8_SLL이 각각 14, 18 copy 이상 큰느타리버섯 유전체에 삽입되어 있음을 Southern blot 분석을 통하여 밝혔다. 이와 더불어, 이들이 full length retrotransposon mRNA을 생산하고 있음을 RT-PCR과 northern blot을 통하여 밝힘으로서 활성이 있는 LTR retrotransposon임을 증명하였다.

Keywords

References

  1. McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 1950;36:344-355. https://doi.org/10.1073/pnas.36.6.344
  2. Kidwell MG. Transposable elements and the evolution of genome size in eukaryotes. Genetica 2002;115:49-63. https://doi.org/10.1023/A:1016072014259
  3. Lonnig W, Saedler H. Chromosome rearrangements and transposable elements. Ann Rev Genet 2002;36:389-410. https://doi.org/10.1146/annurev.genet.36.040202.092802
  4. Kazazian Jr HH. Mobile elements: Drivers of genome evolution. Science 2004;303:1626-1632. https://doi.org/10.1126/science.1089670
  5. Feschotte C. Transposable elements and the evolution of regulatory networks. Nature Rev Genet 2008;9:397-405. https://doi.org/10.1038/nrg2337
  6. Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, Pittard WS, Devine SE. Recently mobilized transposons in the human and chimpanzee genomes. Am J Human Genet 2006;78:671-679. https://doi.org/10.1086/501028
  7. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, et al. A unified classification system for eukaryotic transposable elements. Nature Rev Genet 2007;8:973-982. https://doi.org/10.1038/nrg2165
  8. Wöstemeyer J, Kreibich A. Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. Curr Genet 2002;41:189-198. https://doi.org/10.1007/s00294-002-0306-y
  9. Boeke JD, Sandmeyer SB. Yeast transposable elements. In: Broach JR, Pringle JR, Jones EW, editors. The molecular and cellular biology of the yeast Saccharomyces: Genome dynamics, protein synthesis, and energetic. New York: Cold Spring Harbor Laboratory Press; 1991. p. 193-261.
  10. Hull R. Classifying reverse transcribing elements: a proposal and a challenge to the ICTV. Arch Virol 2001;146:2255-2261. https://doi.org/10.1007/s007050170036
  11. Larrondo LF, Canessa P, Vicuna R, Stewart P, Wymelenberg AV, Cullen D. Structure and transcriptional impact of divergent repetitive elements inserted within Phanerochaete chrysosporium strain RP-78 genes. Mol Genet Genom 2007;277:43-55.
  12. Levin HL, Weaver DC, Boeke JD. Two related families of retrotransposons from Schizosaccharomyces pombe. Mol Cell Biol 1990;10:6791-6798. https://doi.org/10.1128/MCB.10.12.6791
  13. Gorinsek B, Gubensek F, Kordis D. Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol 2004;21:781-798. https://doi.org/10.1093/molbev/msh057
  14. Murata H, Yamada A. marY1, a member of the gypsy group of long terminal repeat retroelements from the ectomycorrhizal basidiomycete Tricholoma matsutake. Appl Environ Microbiol 2000;66:3642-3645. https://doi.org/10.1128/AEM.66.8.3642-3645.2000
  15. Horgen PA, Carvalho D, Sonnenberg A, Li A, Van Griensven L. Chromosomal abnormalities associated with strain degeneration in the cultivated mushroom, Agaricus bisporus. Fungal Genet Biol 1996;20:229-241. https://doi.org/10.1006/fgbi.1996.0038
  16. Kazazian Jr HH, Goodier JL. LINE drive: retrotransposition and genome instability. Cell 2002;110:277-280. https://doi.org/10.1016/S0092-8674(02)00868-1
  17. Le QV, Won HK, Lee TS, Lee CY, Lee HS, Ro HS. Retrotransposon microsatellite amplified polymorphism strain fingerprinting markers applicable to various mushroom species. Mycobiology 2008;36:161-166. https://doi.org/10.4489/MYCO.2008.36.3.161