References
- Alexander, C., Cordeiro, G. M., Ortega, E. M. M. and Sarabia, J. M. (2012). Generalized beta-generated distributions, Computational Statistics and Data Analysis, 56, 1880-1897. https://doi.org/10.1016/j.csda.2011.11.015
- Azzalini, A. and Capitanio, A. (2003). Distribution generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution, Journal of the Royal Statistical Society, Series B, 65, 367-389. https://doi.org/10.1111/1467-9868.00391
- Barreto-Souza, W., Lemos de Morais, A. and Cordeiro, G. M. (2011). The Weibull geometric distribution, Journal of Statistical Computation and Simulation, 81, 645-657. https://doi.org/10.1080/00949650903436554
- Bidram, H., Behboodian, J. and Towhidi, M. (2011) The beta Weibull-geometric distribution, Jornal of Statistical Computation and Simulation, 83, 52-67.
- Cordeiro, G. M., Silva, G. O. and Ortega, M. M. (2011) The beta-Weibull geometric distribution, Statistics, DOI:10.1080/02331888.2011.577897
- Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B (Methodological), 39, 1-38.
- Eugene, N., Lee, C. and Famoye, F. (2002). Beta-normal distribution and its applications, Communications in Statistics - Theory and Methods, 31, 497-512. https://doi.org/10.1081/STA-120003130
- Fonseca, M. B. and Franca, M. G. C. (2007). A in uencia da fertilidade do solo e caracterizacao da xacao biologica de N2 para o crescimento de Dimorphandra wilsonii rizz, Master's thesis, Universidade Federal de Minas Gerais.
- Gelfand, E. and Smith, F. M. (1990). Sampling-Based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 398-409. https://doi.org/10.1080/01621459.1990.10476213
- Hansen, B. E. (1994). Autoregressive conditional density estimation, International Economic Review, 35, 705-730. https://doi.org/10.2307/2527081
- Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97
- Jung, J. and Chung, Y. (2013). Bayesian prediction of Exponential Weibull distribution based on progressive type II cednsoring, Communications for Statistical Applications and Methods, 20, 427-438. https://doi.org/10.5351/CSAM.2013.20.6.427
- Kim, C., Jung, J. and Chung, Y. (2011). Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring, Statistical Papers, 52, 53-70. https://doi.org/10.1007/s00362-009-0203-2
- Kwan, K. C., Breault, G. O., Umbenhauer, E. R., McMahon, F. G. and Duggan, D. F. (1976). Kinetics of Indomethacin absorption, elimination, and enterohepatic circulation in man, Journal of Pharmacokinetics and Biopharmaceutics, 4, 255-280. https://doi.org/10.1007/BF01063617
- Mahmoudi, E. and Shiran, M. (2012). Exponentiated Weibull-Geometric Distribution and its Applications, arXiv:1206.4008vl [stat.ME]
- McLachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Extension, Wiley, New York.
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equations of state calculations by fast computing machines, Journal of Chemical Physics, 21, 1087-1092. https://doi.org/10.1063/1.1699114
- Mudholkar, G. S., Srivastava, D. K. and Freimer, M. (1995). The exponentiated Weibull family; a reanalysis of the bus motor failure data, Technometrics, 37, 436-445. https://doi.org/10.1080/00401706.1995.10484376
- Nadarajah, S., Cordeiro, G. M. and Ortega, E. M. M. (2013). The exponentiated Weibull distribution:A survey, Statistical Papers, 54, 839-877. https://doi.org/10.1007/s00362-012-0466-x
- Nassar, M. M. and Eissa, F. H. (2003). On the exponentiated Weibull distribution, Communications in Statistics - Theory and Methods, 32, 1317-1336. doi:10.1081/STA-120021561.
- Nassar, M. M. and Eissa, F. H. (2004). Bayesian estimation for the exponentiated Weibull model, Communications in Statistics - Theory and Methods, 33, 2343-2362.
Cited by
- Generalized half-logistic Poisson distributions vol.24, pp.4, 2017, https://doi.org/10.5351/CSAM.2017.24.4.353