DOI QR코드

DOI QR Code

Kullback-Leibler Information of the Equilibrium Distribution Function and its Application to Goodness of Fit Test

  • 투고 : 2013.12.05
  • 심사 : 2014.03.14
  • 발행 : 2014.03.31

초록

Kullback-Leibler (KL) information is a measure of discrepancy between two probability density functions. However, several nonparametric density function estimators have been considered in estimating KL information because KL information is not well-defined on the empirical distribution function. In this paper, we consider the KL information of the equilibrium distribution function, which is well defined on the empirical distribution function (EDF), and propose an EDF-based goodness of fit test statistic. We evaluate the performance of the proposed test statistic for an exponential distribution with Monte Carlo simulation. We also extend the discussion to the censored case.

키워드

참고문헌

  1. Abo-Eleneen, Z. A. (2011). The entropy of progressively censored samples, Entropy, 13, 437-449. https://doi.org/10.3390/e13020437
  2. Andrews, F. C and Andrews, A. C. (1962). The form of the equilibrium distribution function, Trans-actions of the Kansas Academy of Science., 65, 247-256. https://doi.org/10.2307/3626424
  3. Baratpour, S. and Rad, A. H. (2012). Testing goodness-of-fit for exponential distribution based on cumulative residual entropy, Communications in Statistics-Theory and Methods, 41, 1387-1396. https://doi.org/10.1080/03610926.2010.542857
  4. Bowman, A. W. (1992). Density based tests for goodness-of-fit, Journal of Statistical Computation and Simulation, 40, 1-13. https://doi.org/10.1080/00949659208811361
  5. Dudewicz, E. and van der Meulen, E. (1981). Entropy based tests of uniformity, Journal of the American Statistical Association, 76, 967-974. https://doi.org/10.1080/01621459.1981.10477750
  6. Ebrahimi, N., Habibullah, M. and Soofi, E. S. (1992). Testing exponentiality based on Kullback-Leibler information, Journal of the Royal Statistical Society, 54, 739-748.
  7. Jaynes, E. T. (1957). Information theory and statistical mechanics, Physical Revies, 106, 620-630. https://doi.org/10.1103/PhysRev.106.620
  8. Kullback, S. (1959). Information Theory and Statistics, Wiley, New York.
  9. Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data, Wiley, New York.
  10. Mosayeb, A. and Borzadaran, M. G. R. (2013). Kullback-Leibler information in view of an extended version of k-records, Communications for Statistical Applications and Methods, 20, 1-13. https://doi.org/10.5351/CSAM.2013.20.1.001
  11. Nakamura, T. K. (2009). Relativistic equilibrium distribution by relative entropy maximization, Europhysics letters, 88, 40009. https://doi.org/10.1209/0295-5075/88/40009
  12. Park, S. (1995). The entropy of consecutive order statistics, IEEE Transactions on Information Theory, 41, 2003-2007. https://doi.org/10.1109/18.476325
  13. Park, S. (2005). Testing exponentiality based on Kullback-Leibler information with the type II cnesored data, IEEE Transactions on Reliability, 54, 22-26. https://doi.org/10.1109/TR.2004.837314
  14. Park, S. and Park, D. (2003). Correcting moments for goodness of fit tests based on two entropy estimates, Journal of Statistical Computation and Simulation, 73, 685-694. https://doi.org/10.1080/0094965031000070367
  15. Rao, M., Chen, Y., Vemuri, B. C. and Wang, F. (2004). Cumulative residual entropy: A new measure of information, IEEE Transactions on Information Theory, 50, 1220-1228. https://doi.org/10.1109/TIT.2004.828057
  16. Samanta, M. and Schwarz, C. J. (1988). The Shapiro-Wilk test for exponentiality based on censored data, Journal of the American Statistical Association, 83, 528-531. https://doi.org/10.1080/01621459.1988.10478628
  17. Soofi, E. S. (2000). Principal information theoretic approaches, Journal of the American Statistical Association, 95, 1349-1353. https://doi.org/10.1080/01621459.2000.10474346
  18. Stacy, E. W. (1962). A generalization of the Gamma distribution, Annals of Mathematical Statistics, 33, 1187-1192. https://doi.org/10.1214/aoms/1177704481
  19. Theil, H. (1980). The entropy of the maximum entropy distribution, Economics Letters, 5, 145-148. https://doi.org/10.1016/0165-1765(80)90089-0
  20. Wong, K. M. and Chen, S. (1990). The entropy of ordered sequences and order statistics, IEEE Transactions on Information Theory, 36, 276-284. https://doi.org/10.1109/18.52473

피인용 문헌

  1. Exponentiality test based on Renyi distance between equilibrium distributions 2018, https://doi.org/10.1080/03610918.2017.1366514