DOI QR코드

DOI QR Code

Influence of Wetting Agents on Physical Properties of Soft Contact Lens

친수성 소프트 콘택트렌즈의 물리적 특성에 미치는 습윤성 재료의 영향

  • Lee, Min-Jae (Dept. of Ophthalmic Optics, Sehan University) ;
  • Sung, A-Young (Dept. of Ophthalmic Optics, Sehan University) ;
  • Kim, Tae-Hun (Dept. of Visual Optics, Baekseok University)
  • 이민제 (세한대학교 안경광학과) ;
  • 성아영 (세한대학교 안경광학과) ;
  • 김태훈 (백석대학교 안경광학과)
  • Received : 2014.01.30
  • Accepted : 2014.03.15
  • Published : 2014.03.31

Abstract

Purpose: The physical and optical characteristics of hydrophilic contact lens polymerized with addition of glycerin and PVP(polyvinylpyrrolidone) in the basic hydrogel contact lens material were evaluated. Methods: This study used glycerin and PVP(polyvinylpyrrolidone) with the cross-linker EGDMA (ethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate) and the initiator AIBN (azobisisobutyronitrile) for copolymerization. Results: Measurements of the physical characteristics of the copolymerized material including PVP(polyvinylpyrrolidone) showed the refractive index of 1.4382~1.4288, tensile strength of 0.3446~2542 kgf and water content and contact angle of sample showed the increase of 13.49% and decrease of 21.44% independently. And also, the physical characteristics of the copolymerized material including glycerin showed the refractive index of 1.4330~1.4328, tensile strength of 0.2974~0.2854 kgf, water content 35.58~36.53% and contact angle of sample showed the decrease of 37.64%. Conclusions: Based on the results of this study, the produced copolymers is suitable for conventional lens with high wettability. Also, glycerin minimized the changes of water content and refractive index at the same time, increased the wettability of the hydrogel lens materials.

목적: 본 연구는 glycerin과 PVP(polyvinylpyrrolidone)을 각각 첨가제로 사용하였을 때 친수성 콘택트렌즈의 물성 변화를 평가하였다. 방법: Glycerin과 PVP(polyvinylpyrrolidone)를 각각 첨가제로 사용하여 교차결합제인 EGDMA (ethylene glycol dimethacrylate) 기본적인 모노머인 HEMA(2-hydroxyethyl methacrylate)와 그리고 개시제인 AIBN(azobisisobutyronitrile)을 기본 조합으로 하여 공중합하였다. 결과: 생성된 고분자의 물리적 특성을 측정한 결과 PVP(polyvinylpyrrolidone)의 경우, 굴절률은 1.4382~1.4288로, 인장강도는 0.3446~0.2542 kgf로 각각 감소하였으며, 접촉각은 21.44% 감소되고 함수율은 13.49% 증가하였다. 또한 glycerin의 경우, 굴절률 1.4330~1.4328로, 인장강도는 0.2974~0.2854 kgf로, 함수율은 35.58~36.53%로 큰 변화를 보이지 않았으며, 접촉각의 경우 37.64%가 감소되었다. 결론: 본 실험결과로 볼 때, 생성된 공중합체는 고 습윤성 안 의료용 렌즈 재료로 사용이 가능하며, 또한 glycerin을 첨가제로 사용하였을 때, 함수율과 굴절률의 변화를 최소화시킴과 동시에 친수성 렌즈의 습윤성을 증가시켰다.

Keywords

References

  1. Kim TH, Sung AY. Physical Characterization and Contact Lens Application of Polymer Produced with Propylene Glycol Additive. J Korean Chem Soc. 2010;54(1):105-109. https://doi.org/10.5012/jkcs.2010.54.01.105
  2. Cho SA, Kim TH, Sung AY. Polymerization and Characterization of Ophthalmic Polymer Containing Glycerol dimethacrylate with High Wettability. J Korean Chem Soc. 2011;55(2):283-289. https://doi.org/10.5012/jkcs.2011.55.2.283
  3. Kim DH, Kim TH, Sung AY. Study on the Strength and Surface Characteristics of Ophthalmic Copolymer with Glycol Group. J Korean Chem Soc. 2012;56(2):297-302. https://doi.org/10.5012/jkcs.2012.56.2.297
  4. Ye KH, Kim TH, Sung AY. Study on the water content variation of contact lens with silicone type. Korean J Vis Sci. 2008;10(1):63-70.
  5. Masnick KB, Holden BA. A Study of water content and parametric variations of hydrophilc contact lenses. Aust J Optom. 1972;55(12):481-487.
  6. Tranoudis I, Efron N. Parameter stability of soft contact lenses made from different materials. Contact Lens & Anterior Eye. 2004;27(3):115-131. https://doi.org/10.1016/j.clae.2004.03.001
  7. Yazdani SS, Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology. 2007;18(3):213-219. https://doi.org/10.1016/j.copbio.2007.05.002
  8. Kanaze FI, Kokkalou E, Niopas I, Barmpalexis P, Georgarakis E, Bikiaris E. Dissolution rate and stability study of flavanone aglycones, naringenin and hesperetin, by drug delivery systems based on polyvinylpyrrolidone (PVP) nanodispersions. Drug Development and Industrial Pharmacy. 2007;36(3):292-301.
  9. Han IS, lim YM, Kwon HJ, Park JS, No YC Preparation and Characterization of Polyvinylpyrrolidone/$\kappa$-Carrageenan/ Hxanediol Hydrogel by Gamma-ray Irradiation. Polymer (Korea). 2011;35(1):13-16.
  10. Chun YS. Current concepts and therapeutic management of Dry Eye. J Korean Med Assoc. 2007;50(9):842-847. https://doi.org/10.5124/jkma.2007.50.9.842

Cited by

  1. Analysis of Vertex Refractive Power Accuracy of Soft Contact Lens with Holder Type vol.20, pp.2, 2015, https://doi.org/10.14479/jkoos.2015.20.2.105
  2. Physical Properties Assessment of Soft Contact Lens with Halogen and Carboxylic Substituted Pyridine as Additive vol.20, pp.4, 2015, https://doi.org/10.14479/jkoos.2015.20.4.437
  3. High Performance Materials for Ophthalmic Hydrogel Lens Containing Nanoparticles vol.9, pp.1, 2016, https://doi.org/10.13160/ricns.2016.9.1.16
  4. Protein Absorption and Characterization of Hydrogel Polymer Containing 2-Methacryloyloxyethyl Phosphorylcholine as Additive vol.9, pp.4, 2016, https://doi.org/10.13160/ricns.2016.9.4.249
  5. Evaluation for Surficial and Internal Hydrophilicity of Soft Contact Lenses vol.22, pp.3, 2017, https://doi.org/10.14479/jkoos.2017.22.3.213
  6. Polymerization and Preparation of Functional Ophthalmic Material Containing Carbon Nanoparticles vol.28, pp.8, 2018, https://doi.org/10.3740/MRSK.2018.28.8.452
  7. Comparative Study of Polymerization Environment for Hydrogel Ophthalmic Lens vol.28, pp.12, 2018, https://doi.org/10.3740/MRSK.2018.28.12.696
  8. Study on the Preparation and Characterization of Ophthalmic Polymer with High and Low-Water Content vol.61, pp.6, 2017, https://doi.org/10.5012/jkcs.2017.61.6.346
  9. The Performance Stability of Ophthalmic Material with UV-Block Effect Containing Hydroxyl Benzophenone Group and Tungsten Nanoparticles vol.61, pp.3, 2014, https://doi.org/10.5012/jkcs.2017.61.3.97
  10. Physical Characteristics and Protein Adsorption Properties of Hydrogel Lenses Functionalized with an Interpenetrating Succinyl-Chitosan Network vol.19, pp.3, 2014, https://doi.org/10.17337/jmbi.2017.19.3.313
  11. Comparative Study of Physical Properties of Functional Ophthalmic Hydrogel Lens Using Photo and Thermal Polymerization vol.10, pp.3, 2014, https://doi.org/10.13160/ricns.2017.10.3.148
  12. Hydrogel Contact Lens Materials with Improved UV Blocking Effect vol.11, pp.1, 2014, https://doi.org/10.13160/ricns.2018.11.1.1
  13. Polymerization and Physical Property Assessment of Optical Lens Materials Containing Amide Group vol.62, pp.2, 2014, https://doi.org/10.5012/jkcs.2018.62.2.113
  14. Compatibility of POSS Composites with Silicone Monomers and Application to Contact Lenses Material vol.64, pp.6, 2014, https://doi.org/10.5012/jkcs.2020.64.6.354
  15. Sustained Delivery of Timolol Using Nanostructured Lipid Carriers-Laden Soft Contact Lenses vol.22, pp.6, 2014, https://doi.org/10.1208/s12249-021-02096-6
  16. Travoprost-loaded PEGylated solid lipid nanoparticle-laden silicone contact lens for managing glaucoma vol.66, pp.None, 2014, https://doi.org/10.1016/j.jddst.2021.102731