References
- D. Chowdhury, C. D. Hull, O. B. Degani, Y. Wang, and A. M. Niknejad, "A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMAX applications," IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3393-3402, Dec. 2009. https://doi.org/10.1109/JSSC.2009.2032277
- A. Afsahi, A. Behzad, and L. E. Larson, "A 65 nm CMOS 2.4 GHz 31.5 dBm power amplifier with a distributed LC power-combining network and improved linearization for WLAN applications," in IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2010, pp. 452-453.
-
T. Sowlati and D. M. W. Leenaerts, "A 2.4-GHz 0.18-
$\mu{m}$ self-biased cascode power amplifier," IEEE Journal of Solid-State Circuits, vol. 38, no. 8, pp. 1318-1324, Aug. 2003. https://doi.org/10.1109/JSSC.2003.814417 - D. Kang, B. Park, D. Kim, J. Kim, Y. Cho, and B. Kim, "Envelope-tracking CMOS power amplifier module for LTE applications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 10, pp. 3763-3773, Oct. 2013. https://doi.org/10.1109/TMTT.2013.2280186
- I. Aoki, S. D. Kee, D B. Rutledge, and A. Hajimiri, "Fully integrated CMOS power amplifier design using the distributed active-transformer architecture," IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 371-383, Mar. 2002. https://doi.org/10.1109/4.987090
- E. Kaymaksut and P. Reynaert, "Transformer-based uneven Doherty power amplifier in 90 nm CMOS for WLAN applications," IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1659-1671, Jul. 2012. https://doi.org/10.1109/JSSC.2012.2191334
- H. Hedayati, M. Mobarak, G. Varin, P. Meunier, P. Gamand, E. Sanchez-Sinencio, and K. Entesari, "A 2-GHz highly linear efficient dual-mode BiCMOS power amplifier using a reconfigurable matching network," IEEE Journal of Solid-State Circuits, vol. 47, no. 10, pp. 2385-2404, Oct. 2012. https://doi.org/10.1109/JSSC.2012.2203460
- D. K. Su and W. J. McFarland, "An IC for linearizing RF power amplifiers using envelope elimination and restoration," IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2252-2258, Dec. 1998. https://doi.org/10.1109/4.735710
- F. Wang, D. F. Kimball, D. Y. Lie, P. M. Asbeck, and L. E. Larson, "A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier," IEEE Journal of Solid-State Circuits, vol. 42, no. 6, pp. 1271-1281, Jun. 2007. https://doi.org/10.1109/JSSC.2007.897170
- D. Kang, B. Park, C. Zhao, D. Kim, J. Kim, Y. Cho, S. Jin, H. Jin, and B. Kim, "A 34% PAE, 26-dBm output power envelope-tracking CMOS power amplifier for 10-MHz BW LTE applications," in IEEE International Microwave Symposium, Montreal, Canada, 2012.
- B. Park, D. Kang, D. Kim, Y. Cho, C. Zhao, J. Kim, Y. Na, and B. Kim, "A 31.5% 26 dBm LTE CMOS power amplifier with harmonic control," in Proceedings of the 7th European Microwave Integrated Circuits Conference, Amsterdam, The Netherlands, 2012, pp. 341-344.
- S. Jin, M. Kwon, K. Moon, B. Park, and B. Kim, "Control of IMD asymmetry of CMOS power amplifier for broadband operation using wideband signal," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 10, pp. 3753-3762, Oct. 2013. https://doi.org/10.1109/TMTT.2013.2280116
- S. Jin, B. Park, K. Moon, M. Kwon, and B. Kim, "Linearization of CMOS cascode power amplifiers through adaptive bias control," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4534-4543, Dec. 2013. https://doi.org/10.1109/TMTT.2013.2288206
- J. Kang, J. Yoon, K. Min, D. Yu, J. Nam, Y. Yang, and B. Kim, "A highly linear and efficient differential CMOS power amplifier with harmonic control," IEEE Journal of Solid-State Circuits, vol. 41, no. 6, pp. 1314-1322, Jun. 2006. https://doi.org/10.1109/JSSC.2006.874276
- P. Reynaert and S. Steyaert, "A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE," IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2598-2608, Dec. 2005. https://doi.org/10.1109/JSSC.2005.857425
- J. S. Walling, S. S. Taylor, and D. J. Allstot, "A class-G supply modulator and class-E PA in 130 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 44, no. 9, pp. 2339-2347, Sep. 2009. https://doi.org/10.1109/JSSC.2009.2023191
- V. Pinon, F. Hasbani, A. Giry, D. Pache, and C. Garnier, "A single-chip WCDMA envelope reconstruction LDMOS PA with 130MHz switched-mode power supply," in IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2008, pp. 564-565.
- G. Hanington, P. F. Chen, P. M. Asbeck, and L. E. Larson, "High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications," IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8, pp. 1471-1476, Aug. 1999. https://doi.org/10.1109/22.780397
- W. Y. Chu, B. Bakkaloglu, and S. Kiaei, "A 10MHzbandwidth 2 mV-ripple PA-supply regulator for CDMA transmitters," in IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2008, pp. 448-449.
- J. Choi, D. Kim, D. Kang, and B. Kim, "A new power management IC architecture for envelope tracking power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 7, pp. 1796-1802, Jul. 2011. https://doi.org/10.1109/TMTT.2011.2134108
- D. Kim, D. Kang, J. Choi, J. Kim, Y. Cho, and B. Kim, "Optimization for envelope shaped operation of envelope tracking power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 7, pp. 1787-1795, Jul. 2011. https://doi.org/10.1109/TMTT.2011.2140124
- S. Sakiyama, J. Kajiwara, M. Kinoshita, K. Satomi, K. Ohtani, and A. Matsuzawa, "An on-chip high-efficiency and low-noise DC/DC converter using divided switches with current control technique," in IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 1999, pp. 156-157.
- D. Kim, J. Choi, D. Kang, and B. Kim, "High efficiency and wide band envelope tracking power amplifier with sweet spot tracking," in IEEE Radio Frequency Integrated Circuits Symposium, Anaheim, CA, 2010, pp. 255-258.
Cited by
- CMOS Saturated Power Amplifier With Dynamic Auxiliary Circuits for Optimized Envelope Tracking vol.62, pp.12, 2014, https://doi.org/10.1109/TMTT.2014.2364584
- Investigation of Intermodulation Distortion of Envelope Tracking Power Amplifier for Linearity Improvement vol.63, pp.4, 2015, https://doi.org/10.1109/TMTT.2015.2405541
- High-Performance CMOS Power Amplifier With Improved Envelope Tracking Supply Modulator 2016, https://doi.org/10.1109/TMTT.2016.2518659
- Highly Efficient RF Transmitter Over Broad Average Power Range Using Multilevel Envelope-Tracking Power Amplifier vol.62, pp.6, 2015, https://doi.org/10.1109/TCSI.2015.2423771
- Highly Linear mm-Wave CMOS Power Amplifier vol.64, pp.12, 2016, https://doi.org/10.1109/TMTT.2016.2623706
- CMOS Power Amplifier on Top of Embedded Transformer for Compact Module vol.25, pp.10, 2015, https://doi.org/10.1109/LMWC.2015.2463222
- Geo-Electrical Design of Wideband, Efficient Class-F Power Amplifiers vol.E98.C, pp.10, 2015, https://doi.org/10.1587/transele.E98.C.987
- Fully Integrated CMOS Saturated Power Amplifier With Simple Digital Predistortion vol.24, pp.8, 2014, https://doi.org/10.1109/LMWC.2014.2317912
- Analysis of Far-Out Spurious Noise and its Reduction in Envelope-Tracking Power Amplifier vol.63, pp.12, 2015, https://doi.org/10.1109/TMTT.2015.2495178
- Design of an Advanced CMOS Power Amplifier vol.15, pp.2, 2015, https://doi.org/10.5515/JKIEES.2015.15.2.63
- An HBT Saturated Power Amplifier With Minimized Knee Effect for Envelope Tracking Operation vol.25, pp.8, 2015, https://doi.org/10.1109/LMWC.2015.2440771
- Voltage-Combined CMOS Doherty Power Amplifier Based on Transformer vol.64, pp.11, 2016, https://doi.org/10.1109/TMTT.2016.2603499