DOI QR코드

DOI QR Code

Temperature Sensor Based on Fabry-Perot Interferometer Using a Fiber Optic Patch Cord

광섬유 패치코드를 이용한 Fabry-Perot 간섭계 온도센서

  • Kim, Ju Ha (Nano-Photonics Research Center, Korea Photonics Technology Institute) ;
  • Jung, Eun Joo (Nano-Photonics Research Center, Korea Photonics Technology Institute) ;
  • Kim, Myoung Jin (Nano-Photonics Research Center, Korea Photonics Technology Institute) ;
  • Hwang, Sung Hwan (Nano-Photonics Research Center, Korea Photonics Technology Institute) ;
  • Lee, Woo Jin (Nano-Photonics Research Center, Korea Photonics Technology Institute) ;
  • Kim, Gye Won (Nano-Photonics Research Center, Korea Photonics Technology Institute) ;
  • An, Jong Bae (Nano-Photonics Research Center, Korea Photonics Technology Institute) ;
  • Choi, Eun Seo (Department of Physics, Chosun University) ;
  • Rho, Byung Sup (Nano-Photonics Research Center, Korea Photonics Technology Institute)
  • 김주하 (한국광기술원 나노광전연구센터) ;
  • 정은주 (한국광기술원 나노광전연구센터) ;
  • 김명진 (한국광기술원 나노광전연구센터) ;
  • 황성환 (한국광기술원 나노광전연구센터) ;
  • 이우진 (한국광기술원 나노광전연구센터) ;
  • 김계원 (한국광기술원 나노광전연구센터) ;
  • 안종배 (한국광기술원 나노광전연구센터) ;
  • 최은서 (조선대학교 물리학과) ;
  • 노병섭 (한국광기술원 나노광전연구센터)
  • Received : 2013.12.09
  • Accepted : 2014.02.05
  • Published : 2014.03.31

Abstract

In this paper, we propose and demonstrate a Fabry-Perot interferometer (FPI) optical fiber tip sensor fabricated by a blade-sawing technique using a fiber optic patch cord for high-resolution temperature measurement. The sensor head consists of a short air FP cavity near the tip of a single-mode fiber patch cord tip. The temperature which we can measure is determined through a phase variation of the interference fringes in the reflective spectrum of the sensor. The fiber optic FPI sensor in this work can monitor the environmental temperature very accurately from 40 to $120^{\circ}C$. As a result, the temperature sensitivity is obtained as $38.2pm/^{\circ}C$.

Keywords

References

  1. W. W. Morey, G. Meltz, and W. H. Glenn, "Fibre optic Bragg grating sensor", Proc. SPIE, 1169, pp. 98-107, 1994.
  2. Y. Rao, Webb. D. J, Jackson. D. A, Lin. Zhang, and Bennion. I, "In fiber Bragg-grating temperature sensor system for medical applications", Lightwave Tech., vol. 15, no. 5, pp. 779-785, 1997. https://doi.org/10.1109/50.580812
  3. B. Zhang and M. Kahrizi, "High-temperature resistance fiber bragg grating temperature sensor fabrication", Sensors Journal. IEEE, vol. 7, no. 4, pp. 586-591, 2007. https://doi.org/10.1109/JSEN.2007.891941
  4. J. H. Park and K. T. Kim, "Fiber-optic interferometric temperature sensor using a hollow fiber", J. Sensor Sci. & Tech., vol. 16, no. 3, pp. 192-196, 2007. https://doi.org/10.5369/JSST.2007.16.3.192
  5. C. L. Zhao, M. S. Demokan, W. Jin, and L. Xiao, "A cheap and practical FBG temperature sensor utilizing a longperiod grating in a photonic crystal fiber", Optics Communications, vol. 276, no. 2, pp. 242-245, 2007. https://doi.org/10.1016/j.optcom.2007.04.037
  6. W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, "High-sensitivity temperature sensor based on an alchohol-filled photonic crystal fiber loop mirror", Optics Letters, vol. 36, no. 9, pp. 1548-1550, 2011. https://doi.org/10.1364/OL.36.001548
  7. R. Yang, Y. S. Yu, Y. Xue, and C. Chen, "A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber", Photonics Tech. IEEE, vol. 25, no. 9, pp. 829-832, 2013. https://doi.org/10.1109/LPT.2013.2252336
  8. L. Xuefeng, L. Shuo, L. Jinxing, O. Hiroshi, and U. Toshitsugu, "High sensitivity fiber-optic Fabry-Perot interferometer temperature sensor", Japanese Journal of Applied Physics, vol. 51, no. 6, pp. 06FL10-06FL10-4, 2012. https://doi.org/10.7567/JJAP.51.06FL10
  9. T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, "Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing", Optics Letters, vol. 37, no. 24, pp. 5082-5084, 2012. https://doi.org/10.1364/OL.37.005082
  10. L. Xu, L. Jiang, S. Wang, B. Li, and Y. Lu, "High-temperature sensor based on an abrupt-taper Michelson interferometer in single-mode fiber", Applied Optics, vol. 52, no. 10, pp. 2038-2031, 2013. https://doi.org/10.1364/AO.52.002038
  11. H. J. Park and M. H. Song, "Linear FBG temperature sensor interrogation with Fabry-Perot ITU multi-wavelength reference", Journal of KIIEE, vol. 21, no. 7, pp. 54-60, 2008.
  12. D. H. Kim and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity", Optics Express, vol. 12, no. 19, pp. 4490-4495, 2004. https://doi.org/10.1364/OPEX.12.004490
  13. T. Wei, Y. Han, H. L. Tsai, and H. Xiao, "Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser", Optics Letters, vol. 33, no. 6, pp. 536-538, 2008. https://doi.org/10.1364/OL.33.000536