References
- Abdalla, M.M., Setoodeh, S. and Gurdal, Z. (2007), "Design of variable stiffness composite panels for maximum fundamental eigenfrequency using lamination parameters", Comput. Struct., 81(2), 283-291. https://doi.org/10.1016/j.compstruct.2006.08.018
- Arbocz, J. (1968), Buckling of conical Shells under axial compression, NASA, Report CR-1162.
- Baruch, M., Arbocz, J. and Zhang, G.Q. (1993), "Laminated conical shells consideration for the variations of the stiffness coefficients", Proceeding of the 35th AIAA/ASME/ASCE/AHS/ASC S.S.D.M. Conference, Hilton Head, SC, USA.
- Baruch, M., Harai, O. and Singer, J. (1970), "Low buckling of axially compressed conical shells", J. Appl. Mech., 37(2), 384-392. https://doi.org/10.1115/1.3408517
- Blom, A.W., Abdalla, M.M. and Gurdal, Z. (2010), "Optimization of course locations in fiber-placed panels for general fiber angle distributions", Compos. Sci. Technol., 70(4), 564-570. https://doi.org/10.1016/j.compscitech.2009.12.003
- Blom, A.W., Setoodeh, S., Hol, J.M.A.M. and Gurdal, Z. (2008), "Design of variable-stiffness conical shells for maximum fundamental eigenfrequency", Comput. Struct., 86(9), 870-878. https://doi.org/10.1016/j.compstruc.2007.04.020
- Blom, A.W., Tatting, B.F., Hol, J.M.A.M. and Gurdal, Z. (2009), "Fiber path definitions for elastically tailored conical shells", Compos. Part B. Eng., 40(1), 77-84. https://doi.org/10.1016/j.compositesb.2008.03.011
- Goldfeld, Y. (2007a), "Imperfection sensitivity of laminated conical shells", Int. J. Solid. Struct., 44(3-4), 1221-1241. https://doi.org/10.1016/j.ijsolstr.2006.06.016
- Goldfeld, Y. (2007b), "Elastic buckling and imperfection sensitivity of generally stiffened conical shells", AIAA J., 45(3), 721-729. https://doi.org/10.2514/1.25830
- Goldfeld, Y. and Arbocz, J. (2004), "Buckling of laminated conical Shells given the variation of the stiffness coefficients", AIAA J., 42(3), 642-649. https://doi.org/10.2514/1.2765
- Goldfeld, Y., Arbocz, J. and Rothwell, A. (2005), "Design and optimization of laminated conical shells for buckling", Thin-Wall. Struct., 43(1), 107-133. https://doi.org/10.1016/j.tws.2004.07.003
- Jones, R.M. (1998), Mechanics of Composite Materials, Taylor & Francis, London, UK.
- Seide, P. (1956), "Axisymmetrical buckling of circular cones under axial compression", J. Appl. Mech., 23, 626-628.
- Seide, P. (1957), "A donnell-type theory for asymmetrical bending and buckling of thin conical shells", J. Appl. Mech., 24, 547-552.
- Singer, J. (1963), "Donnell-type equations for bending and buckling of orthotropic conical shells", ASME J. Appl. Mech., 30(2), 303-305. https://doi.org/10.1115/1.3636534
- Tong, L. (1998), "Buckling of filament wound composite conical shells under axial compression", AIAA J., 37(6), 779-781.
- Tong, L. and Wang, T.K. (1992), "Simple solutions for buckling of laminated conical shells", Int. J. Mech. Sci., 34(2), 93-111. https://doi.org/10.1016/0020-7403(92)90076-S
- Tong, L., Tabarrok, B. and Wang, T.K. (1992), "Simple solution for buckling of orthotropic conical shells", Int. J. Solid Struct., 29(8), 933-946. https://doi.org/10.1016/0020-7683(92)90067-4
Cited by
- An investigation into the mechanics of fiber reinforced composite disk springs vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.775
- Optimal design of variable stiffness laminated composite truncated cones under lateral external pressure vol.145, 2017, https://doi.org/10.1016/j.oceaneng.2017.09.011
- Buckling of non-homogeneous orthotropic conical shells subjected to combined load vol.19, pp.1, 2015, https://doi.org/10.12989/scs.2015.19.1.001
- Optimal design of filament wound truncated cones under axial compression vol.170, 2017, https://doi.org/10.1016/j.compstruct.2017.03.023
- Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite vol.29, pp.3, 2018, https://doi.org/10.12989/scs.2018.29.3.405
- Nonlinear primary resonance of spiral stiffened functionally graded cylindrical shells with damping force using the method of multiple scales vol.135, pp.None, 2019, https://doi.org/10.1016/j.tws.2018.10.028