DOI QR코드

DOI QR Code

GPS 코드의사거리 기반 정밀단독측위(PPP) 알고리즘 개발 및 측위 정확도 평가

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms based on GPS Code-Pseudorange Measurements

  • 박관동 (인하대학교 지리정보공학과) ;
  • 김지혜 (인하대학교 지리정보공학과) ;
  • 원지혜 ((주)지평스페이스 기술연구소) ;
  • 김두식 (인하대학교 지리정보공학과)
  • 투고 : 2014.01.09
  • 심사 : 2014.03.06
  • 발행 : 2014.03.31

초록

휴대용 단말에 간편하게 구현 가능하도록 GPS의 코드의사거리 관측치 기반의 정밀단독측위(PPP; Precise Point Positioning) 알고리즘을 개발하고 그 성능을 검증하였다. PPP에 필요한 기본 모델로 그룹 딜레이, 상대성 효과, 위성안테나 위상중심오프셋 보정모델을 적용하였다. 위성 궤도와 시계오차는 IGS(International GNSS Service) 공식 산출물에 최적의 알고리즘을 통해 보간하고, 대류권과 전리층 오차는 각각 과학기술용 GPS 자료처리 소프트웨어로 산출한 참값과 GIM(Global Ionosphere Model)을 사상함수를 적용해 시선방향 오차로 변환해 적용하였다. 개발된 알고리즘을 4일간 테스트한 결과 수평오차는 0.8~1.6m, 수직오차는 1.6~2.2m 수준으로 나타났다. 이는 DGPS 측위결과와 유사한 성능으로 향후 PPP 알고리즘의 추가개선이 이루어질 경우 다양한 측량 및 위치기반서비스 분야에 활용 가능할 것으로 기대된다.

Precise Point Positioning (PPP) algorithms using GPS code pseudo-range measurements were developed and their accuracy was validated for the purpose of implementing them on a portable device. The group delay, relativistic effect, and satellite-antenna phase center offset models were applied as fundamental corrections for PPP. GPS satellite orbit and clock offsets were taken from the International GNSS Service official products which were interpolated using the best available algorithms. Tropospheric and ionospheric delays were obtained by applying mapping functions to the outputs from scientific GPS data processing software and Global Ionosphere Maps, respectively. When the developed algorithms were tested for four days of data, the horizontal and vertical positioning accuracies were 0.8-1.6 and 1.6-2.2 meters, respectively. This level of performance is comparable to that of Differential GPS, and further improvements and fine-tuning of this suite of PPP algorithms and its implementation at a portable device should be utilized in a variety of surveying and Location-Based Service applications.

키워드

참고문헌

  1. Boehm, J., Niell, A., Tregoning, P. and Schuh, H., 2006, Global mapping function (GMF): A new empirical mapping function based on numerical weather model data, Geophysical Reserch Letters, 33, L07304, doi:10.1029/2005GL025546.
  2. Choi, B. K., Back, J.-H., Cho, S.-K., Park, J.-U. and Park, P.-H., 2011, Development of precise point positioning method using global positioning system measurements, Journal of Astronomy and Space Sciences, 28(3), pp. 217-223. https://doi.org/10.5140/JASS.2011.28.3.217
  3. Fei, G, Xiaohong, Z, Xingxing, L, and Shixiang, C., 2010, Impact of sampling rate of IGS clock on precise point positioning, Geo-spatial Inform. Sci, 13(2), pp.150-156. https://doi.org/10.1007/s11806-010-0226-9
  4. Heroux P., and Kouba, J., 1995, GPS precise point positioning with a difference, Geomatics '95, Ottawa, Ontario, Canada.
  5. IGS homepage, http://igscb.jpl.nasa.gov/index.html.
  6. Kim, D., Won, J., Son, E.-S., Park, K.-D., 2012, Generation of grid maps of GPS signal delays in the troposphere and analysis of relative point positioning accuracy enhancement, Journal of Navigation and Port Research, Vol. 36, No. 10, pp. 825-832. https://doi.org/10.5394/KINPR.2012.36.10.825
  7. Kim, H.-I., 2009, Development of integrated global navigation satellite system simulator for evaluation of positioning availability and accuracy improvement, Master's Thesis, Inha University, pp. 19-26.
  8. Kim, J. H., 2013, A study on accuracy improvement of precise point positioning based on GPS code pseudo-range measurements, Master's Thesis, Inha University, pp. 28-32.
  9. Klobuchar, J. A., 1987, Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans Aerosp Electron Syst, AES-23, pp. 325-331. https://doi.org/10.1109/TAES.1987.310829
  10. Mannucci A. J., Wilson B. and Edwards C., 1993, A new method for monitoring the Earth's ionospheric total electron content using the GPS global network, Proceedings of the ION GPS-93, Salt Lake City, Utah, pp. 1323-1332.
  11. Ministry of Maritime Affairs and Fisheries in Korea, 2012, Technology development for regional augmentation and commercialization of DGPS based on terrestrial DMB, Final Report, pp. 1-154.
  12. Misra, P. and Enge, P., 2011, Global positioning system: Signals, measurements, and performance, Revised Second Edition, Ganga-Jamuna Press.
  13. Schaer, S., Gurtner, W., and Feltens, J., 1998, IONEX: The ionosphere map exchange format version 1, In Proceedings of the IGS AC Workshop, Darmstadt, Germany.
  14. Skone S., 1998, Wide area ionosphere grid modelling in the auroral region, Ph.D. Dissertation, Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada.
  15. Steigenberger, P., 2009, Reprocessing of a global GPS network, Ph.D. Dissertation, Deutsche Geodatische Kommission.
  16. Won, J., Park, K.-D., Ha, J. and Cho, J., 2010, Effects of tropospheric mapping functions on GPS data processing, Journal of Astronomy and Space Sciences, 27(1), pp.21-30. https://doi.org/10.5140/JASS.2010.27.1.021
  17. Xu, G., 2007, GPS: theory, algorithms and applications, 2nd edn. Springer, Berlin.
  18. Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H., 1997, Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, 102(B3), pp.5005-5017. https://doi.org/10.1029/96JB03860

피인용 문헌

  1. Development and Positioning Accuracy Assessment of Single-Frequency Precise Point Positioning Algorithms by Combining GPS Code-Pseudorange Measurements with Real-Time SSR Corrections vol.17, pp.6, 2017, https://doi.org/10.3390/s17061347
  2. Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements vol.3, pp.4, 2014, https://doi.org/10.11003/jpnt.2014.3.4.155
  3. Accuracy Evaluation of IGS-RTS Corrections to Stand-Alone Positioning Based on GPS Code-Pseudorange Measurements vol.5, pp.2, 2016, https://doi.org/10.11003/jpnt.2016.5.2.059