DOI QR코드

DOI QR Code

Characteristics of Adsorption and Biodegradation of Tetracycline Antibiotics by Granular Activated Carbon and Biofiltration Process

Tetracycline계 항생물질들의 활성탄 흡착 및 생물여과 공정에 의한 생분해 특성

  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 염훈식 (부산광역시 상수도사업본부 수질연구소) ;
  • 류동춘 (부산광역시 상수도사업본부 수질연구소) ;
  • 장성호 (부산대학교 지역환경시스템공학과) ;
  • 손형식 (울산테크노파크 전략산업기획단)
  • Received : 2013.06.04
  • Accepted : 2013.10.15
  • Published : 2014.03.31

Abstract

Adsorption and biodegradation performance of tetracycline antibiotic compounds such as ttetracycline (TC), oxytetracycline (OTC), minocycline (MNC), chlortetracycline (CTC), doxycycline (DXC), meclocycline (MCC), demeclocycline (DMC) on granular activated carbon (GAC) and anthracite-biofilter were evaluated in this study. Removal efficiency of seven tetracycline antibiotic compounds showed 54%~97% by GAC adsorption process (EBCT: 5~30 min). The orders of removal efficiency by GAC adsorption were tetracycline, demeclocycline, oxytetracycline, chlortetracycline, doxytetracycline, meclocycline and minocycline. Removal efficiencies of seven tetracycline antibiotic compounds showed 1%~61% by anthracite biofiltration process (EBCT: 5~30 min). The highest biodegradable tetracycline antibiotic compound was minocycline, and the worst biodegradable tetracycline antibiotic compounds were oxytetracycline and demeclocycline.

Keywords

References

  1. Boxall, A. B. A., Kolpin, D., Halling-Sorensen, B., Tolls, J., 2003, Are veterinary medicines causing environmental risks, Environ. Sci. Technol., 36, 286-294.
  2. Cecen, F., Aktas, O., 2012, Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment, Wiley-VCH, Weinheim, Germany, 237-264.
  3. Chee-Sanford, J. C., Aminov, R. I., Krapac, I. J., Garrigues- Jeanjean, N., Mackie, R. I., 2001, Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities, Appl. Environ. Microbiol., 67, 1494-1502. https://doi.org/10.1128/AEM.67.4.1494-1502.2001
  4. Choi, K. J., Kim, S. G., Kim, C. W., Kim, S. H., 2005, Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A, Chemosphere, 58(11), 1535-1545. https://doi.org/10.1016/j.chemosphere.2004.11.080
  5. Choi, K. J., Kim, S. G., Kim, C. W., Kim, S. H., 2007a, Determination of antibiotic compounds in water by on-line SPE-LC/MSD, Chemosphere, 66, 977-984. https://doi.org/10.1016/j.chemosphere.2006.07.037
  6. Choi, K. J., Son, H. J., Kim, S. H., 2007b, Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic, Sci. Total Environ., 387, 247-256. https://doi.org/10.1016/j.scitotenv.2007.07.024
  7. Daughton, C. G., Ternes, T. A., 1999, Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environ. Health Perspect., 107, 907-942. https://doi.org/10.1289/ehp.99107s6907
  8. Halling-Sorensen, B., Nielson, S. N., Lanzky, P. E., Ingerslev, L. F., 1998, Occurrence, fate and effects of pharmaceutical substances in the environment-a review, Chemosphere, 36(2), 357-393. https://doi.org/10.1016/S0045-6535(97)00354-8
  9. Heberer, T., 2012, Occurrence, fate and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett., 131, 5-17.
  10. Hileman, B., 2001, Troubled waters: EPA, USGS try to quantify prevalence, risks of compounds from drugs, personal care products, Chem. Eng. News, 79, 31-33.
  11. Loke, M., Tjornelund, J., Halling-sorensen, B., 2002, Determination of the distribution coefficient (log Kd) of oxytetracycline, tylosyn A, olaquindox and metronidazole in manure, Chemosphere, 48(3), 351-361. https://doi.org/10.1016/S0045-6535(02)00078-4
  12. Oturan, N., Wu, J., Zhang, H., Sharma, V. K., Oturan, M. A., 2013, Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials, Applied Catalysis B: Environmental, 140-141, 92-97. https://doi.org/10.1016/j.apcatb.2013.03.035
  13. Son, H. J., Hwang, Y. D., Yoo, P. J., 2009, Removal characteristics of tetracycline, oxytetracycline, trimethoprime and caffeine in biological activated carbon process, J. Kor. Soc. Environ. Eng., 31(3), 186-192.
  14. Son, H. J., Jung, J. M., Hwang, Y. D., Roh, J. S., Yoo, P. J., 2008, Effects of activated carbon types and service life on adsorption of tetracycline antibiotic compounds in GAC process, J. Kor. Soc. Environ. Eng., 30(9), 925-932.
  15. Son, H. J., Roh, J. S., Kim, S. G., Bae, S. M., Kang, L. S., 2005, Removal characteristics of chlorination disinfection by-products by activated carbons, J. Kor. Soc. Environ. Eng., 27(7), 762-770.
  16. Son, H. J., Ryu, D. C., Jang, S. H., 2010, Effect of pore structure change on the adsorption of NOM and THMs in water due to the increase of reactivation number of coal-based activated carbon, J. Kor. Soc. Environ. Eng., 32(10), 965-972.
  17. Son, H. J., Yeom, H. S., Jung, J. M., Jang, S. H., 2013, Application of on-line SPE-LC/MSD to measure perfluorinated compounds (PFCs) in water, J. Kor. Soc. Environ. Eng., 35(2), 75-83. https://doi.org/10.4491/KSEE.2013.35.2.075
  18. Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S. V., Baumann, W., 1999, Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil, Sci. Total Environ., 225, 135-141. https://doi.org/10.1016/S0048-9697(98)00339-8
  19. Wan, Y., Jia, A., Zhu, Z., Hu, J., 2013, Transformation of tetracycline during chloramination: kinetics, products and pathways, Chemosphere, 90, 1427-1434. https://doi.org/10.1016/j.chemosphere.2012.09.001
  20. Wang, Y., Zhang, H., Chen, L., Wang, S., Zhang, D., 2012, Ozonation combined with ultrasound for the degradation of tetracycline in a rectangular air-lift reactor, Sep. Purif. Technol., 84, 138-146. https://doi.org/10.1016/j.seppur.2011.06.035
  21. Wang, Y., Zhang, H., Zhang, J., Lu, C., Huang, Q., Wu, J., Liu, F., 2011, Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor, J. Hazard. Mater., 192, 35-43.
  22. Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005, Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes, Environ. Sci. Technol., 39, 6649-6663. https://doi.org/10.1021/es0484799
  23. Wollenberger, L., Halling-Sorensen, B., Kusk, K. O., 2000, Acute and chronic toxicity of veterinary antibiotics to Daphnia magna, Chemosphere, 40(7), 723-730. https://doi.org/10.1016/S0045-6535(99)00443-9
  24. Xu, X. R., Li, X. Y., 2010, Sorption and desorption of antibiotic tetracycline on marine sediments, Chemosphere, 78, 430-436. https://doi.org/10.1016/j.chemosphere.2009.10.045
  25. Yang, S. H., Carlson, K., 2003, Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes, Water Research, 37, 4645-4656. https://doi.org/10.1016/S0043-1354(03)00399-3

Cited by

  1. Evaluation of Adsorption Characteristics of Radioactive Iodine (I-131) for Various Materials of Granular Activated Carbon (GAC) vol.24, pp.9, 2015, https://doi.org/10.5322/JESI.2015.24.9.1123