Acknowledgement
Supported by : University of Tennessee
References
- Balasundaram, G., Sato, M. and Webster, T.J. (2006), "Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD", Biomaterials, 27(14), 2798-2805. https://doi.org/10.1016/j.biomaterials.2005.12.008
- Ball, M.D., Downes, S., Scotchford, C.A., Antonov, E.N., Bagratashvili, V.N., Popov, V.K., Lo, W.J., Grant, D.M. and Howdle, S.M. (2001), "Osteoblast growth on titanium foils coated with hydroxyapatite by pulsed laser ablation ," Biomaterials, 22(4), 337-347. https://doi.org/10.1016/S0142-9612(00)00189-7
- Ball, M., Grant, D.M., Lo, W.J. and Scotchford, C.A. (2008), "The effect of different surface morphology and roughness on osteoblast-like cells", J. Biomed. Mater. Res. A, 86A(3), 637-647. https://doi.org/10.1002/jbm.a.31652
- Boyan, B.D., Lohmann, C.H., Dean, D.D., Sylvia, V.L., Cochran, D.L. and Schwartz, Z. (2001), "Mechanisms involved in osteoblast response to implant surface morphology", Annu. Rev. Mater. Res., 31(1), 357-371. https://doi.org/10.1146/annurev.matsci.31.1.357
- Chang, Y.L, Stanford, C.M., Wefel, J.S. and Keller, J.C. (1999), "Osteoblastic cell attachment to hydroxyapatite-coated implant surfaces in vitro", Int. J. Oral Maxillofac. Implants, 14(2), 239-247.
- Cui, F. and Luo, Z. (1999), "Biomaterials modification by ion-beam processing", Surf. Coat. Technol., 112(1), 278-285. https://doi.org/10.1016/S0257-8972(98)00763-4
- Cui, Z.D., Chen, M.F., Zhang, L.Y., Hu, R.X., Zhu, S.L. and Yang, X.J. (2008), "Improving the biocompatibility of NiTi alloy by chemical treatments: An in vitro evaluation in 3T3 human fibroblast cell", Mater. Sci. Eng. C, 28(7), 1117-1122. https://doi.org/10.1016/j.msec.2007.05.006
- Dahotre, N.B., Paital, S.R., Samant, A.N. and Daniel, C. (2010), "Wetting behaviour of laser synthetic surface microtextures on Ti-6Al-4V for bioapplication", Philos. T. Roy. Soc. A, 368(1917), 1863-1889. https://doi.org/10.1098/rsta.2010.0003
- Dahotre, S., Vora, H., Rajamure, R.S., Huang, L., Banerjee, R., He, W. and Dahotre, N.B. (2014), "Laser induced nitrogen enhanced titanium surfaces for improved osseo-integration", Ann. Biomed. Eng., 42(1), 50-61. https://doi.org/10.1007/s10439-013-0898-z
- Deligianni, D.D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J. and Missirlis, Y.F. (2001), "Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption", Biomaterials, 22(11), 1241-1251. https://doi.org/10.1016/S0142-9612(00)00274-X
- Garcia, A.J., Ducheyne, P. and Boettiger, D. (1997), "Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials", Biomaterials, 18(16), 1091-1098. https://doi.org/10.1016/S0142-9612(97)00042-2
- Geetha, M., Singh, A.K., Asokamani, R., and Gogia, A.K. (2009), "Ti based biomaterials, the ultimate choice for orthopaedic implants - A review", Prog. Mater. Sci., 54(3) 397-425.
- Grinnell, F. and Feld, M.K. (1982), "Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody-binding and analysed during cell-adhesion in serum-containing medium", J. Biol. Chem., 257(9), 4888-4893.
- Hanawa, T. (1999), "In vivo metallic biomaterials and surface modification", Mater. Sci. Eng. A, 267(2), 260-266. https://doi.org/10.1016/S0921-5093(99)00101-X
- Huang, L., Cao, Z., Meyer, H.M., Liaw, P.K., Garlea, E., Dunlap, J.R., Zhang, T. and He, W. (2011), "Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness", Acta Biomater., 7(1), 395-405. https://doi.org/10.1016/j.actbio.2010.08.002
- Jagielski, J., Piatkowska, A., Aubert, P., Thome, L., Turos, A., Abdul Kader, A. (2006), "Ion implantation for surface modification of biomaterials", Surf. Coat. Technol., 200(22), 6355-6361. https://doi.org/10.1016/j.surfcoat.2005.11.005
- Kurella, A. and Dahotre, N.B. (2005), "Review paper: Surface modification for bioimplants: The role of laser surface engineering", J. Biomater. Appl., 20(1), 5-50. https://doi.org/10.1177/0885328205052974
- Liu, X., Chu, P.K. and Ding, C. (2004), "Surface modification of titanium, titanium alloys, and related materials for biomedical applications", Mater. Sci. Eng. R., 47(3), 49-121. https://doi.org/10.1016/j.mser.2004.11.001
- Marcotte, L. and Tabrizian, M. (2008), "Sensing surfaces: Challenges in studying the cell adhesion process and the cell adhesion forces on biomaterials", IRBM, 29(2), 77-88. https://doi.org/10.1016/j.rbmret.2007.11.019
- Nag, S., Paital, S.R., Nandawana, P., Mahdak, K., Ho, Y.H., Vora, H.D., Banerjee, R. and Dahotre, N.B. (2013), "Laser deposited biocompatible Ca-P coatings on Ti-6Al-4V: Microstructural evolution and thermal modeling", Mater. Sci. Eng. C, 33(1), 165-173. https://doi.org/10.1016/j.msec.2012.08.024
- Nayab, S.N., Jones, F.H. and Olsen, I. (2005), "Effects of calcium ion implantation on human bone cell interaction with titanium", Biomaterials, 26(23), 4717-4127. https://doi.org/10.1016/j.biomaterials.2004.11.044
- Nayab, S.N., Jones, F.H. and Olsen, I. (2007), "Effects of calcium ion-implantation of titanium on bone cell function in vitro", J. Biomed. Mater. Res. A, 83A(2), 296-302. https://doi.org/10.1002/jbm.a.31218
- Ochsenbein, A., Chai, F., Winter, S., Traisnel, M., Breme, J. and Hildebrand, H.F. (2008), "Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates", Acta Biomater., 4(5), 1506-1517. https://doi.org/10.1016/j.actbio.2008.03.012
- Okamoto, K., Matsuura T., Hosokawa R. and Akagawa Y. (1998), "RGD peptides regulate the specific adhesion scheme of osteoblasts to hydroxyapatite but not to titanium", J. Dent. Res., 77(3), 481-487. https://doi.org/10.1177/00220345980770030701
- Okazaki, Y., Rao, S., Ito, Y. and Tateishi, T. (1998), "Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V", Biomaterials, 19(13), 1197-1215. https://doi.org/10.1016/S0142-9612(97)00235-4
- Paital, S.R. and Dahotre, N.B. (2009), "Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies", Mater. Sci. Eng. R, 66(1), 1-70. https://doi.org/10.1016/j.mser.2009.05.001
- Paital, S.R., Cao, Z., He, W. and Dahotre, N.B. (2010a), "Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured Ca-P coating", Biofabrication, 2(2), 025001. https://doi.org/10.1088/1758-5082/2/2/025001
- Paital, S.R., He, W., Daniel, C. and Dahotre, N.B. (2010b), "Laser process effects on physical texture and wetting in implantable Ti-alloys", JOM, 62(6), 76-83.
- Paital, S.R., He, W. and Dahotre, N.B. (2010c), "Laser pulse dependent micro textured calcium phosphate coatings for improved wettability and cell compatibility", J. Mater. Sci-Mater. Med., 21(7), 2187-2200. https://doi.org/10.1007/s10856-010-4085-6
- Paital, S.R., Bunce, N., Nandwana, P., Honrao, C., Nag, S., He, W., Banerjee, R. and Dahotre, N.B. (2011), "Laser surface modification for synthesis of textured bioactive and biocompatible Ca-P coatings on Ti- 6Al-4V", J. Mater. Sci.-Mater. Med., 22(6), 1393-1406.
- Pendegrass, C.J., Middleton, C.A., Gordon, D., Jacob, J. and Blunn, G.W. (2010), "Measuring the strength of dermal fibroblast attachment to functionalized titanium alloys in vitro", J. Biomed. Mater. Res. A, 92A(3), 1028-1037.
- Pham, M.T., Reuther, H., Matz, W., Mueller, R,. Steiner, G., Oswald, S. and Zyganov, I. (2000), "Surface induced reactivity for titanium by ion implantation", J. Mater. Sci-Mater. Med., 11(6), 383-391. https://doi.org/10.1023/A:1008938125348
- Puleo, D. and Nanci, A. (1999), "Understanding and controlling the bone-implant interface", Biomaterials, 20(23), 2311-2321. https://doi.org/10.1016/S0142-9612(99)00160-X
- Reyes, C.D. and Garcia, A.J. (2003), "A centrifugation cell adhesion assay for high-throughput screening of biomaterial surfaces", J. Biomed. Mater. Res. A, 67A(1), 328-333. https://doi.org/10.1002/jbm.a.10122
- Robinson, H.J., Markaki, A.E., Collier, C.A. and Clyne, T.W. (2011), "Cell adhesion to plasma electrolytic oxidation (PEO) titania coatings, assessed using a centrifuging technique", J. Mech. Behav. Biomed. Mater., 4(8), 2103-2112. https://doi.org/10.1016/j.jmbbm.2011.07.009
- Stevens, M.M. and George, J.H. (2005), "Exploring and engineering the cell surface interface", Science, 310(5751), 1135-1138. https://doi.org/10.1126/science.1106587
- Tsui, Y.C., Doyle, C. and Clyne, T.W. (1998a), "Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels", Biomaterials, 19(22), 2015-2029. https://doi.org/10.1016/S0142-9612(98)00103-3
- Tsui, Y.C., Doyle, C. and Clyne, T.W. (1998b), "Plasma sprayed hydroxyapatite coatings on titanium substrates Part 2: optimisation of coating properties", Biomaterials, 19(22), 2031-2043. https://doi.org/10.1016/S0142-9612(98)00104-5
- Variola, F., Vetrone, F., Richert, L., Jedrzejowski, P., Yi, J.H., Zalzal, S., Clair, S., Sarkissian, A., Perepichka, D.F., Wuest, J.D., Rosei, F. and Nanci, A. (2009), "Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges", Small, 5(9), 996-1006. https://doi.org/10.1002/smll.200801186
- Wen, J., Leng, Y., Chen, J. and Zhang, C. (2000), "Chemical gradient in plasma-sprayed HA coatings", Biomaterials, 21(13), 1339-1343. https://doi.org/10.1016/S0142-9612(99)00273-2
- Yang, S.P., Yang, C.Y., Lee, T.M. and Lui, T.S. (2012), "Effects of calcium-phosphate topography on osteoblast mechanobiology determined using a cytodetacher", Mater. Sci. Eng. C, 32(2), 254-362. https://doi.org/10.1016/j.msec.2011.10.026
- Yang, Y.C. and Chang, E. (2003), "The bonding of plasma-sprayed hydroxyapatite coatings to titanium: effect of processing, porosity and residual stress", Thin Solid Film., 444(1), 260-275. https://doi.org/10.1016/S0040-6090(03)00810-1
-
Yang, Y.L, Paital, S.R. and Dahotre, N.B. (2010a), "Wetting and in vitro bioactivity of laser processed CaP coating with presence and variation of
$SiO_{2}$ on Ti-6Al-4V", Mater. Technol., 25(3-4), 137-142. https://doi.org/10.1179/175355510X12723642365287 -
Yang, Y.L, Paital, S.R. and Dahotre, N.B. (2010b), "Effects of
$SiO_{2}$ substitution on wettability of laser deposited Ca-P biocoating on Ti-6Al-4V", J. Mater. Sci.-Mater. Med., 21(9), 2511-2521. https://doi.org/10.1007/s10856-010-4105-6 -
Yang, Y.L., Serpersu, K., He, W., Paital, S.R. and Dahotre, N.B. (2011), "Osteoblast interaction with laser cladded HA and
$SiO_{2}$ -HA coatings on Ti-6Al-4V", Mater. Sci. Eng. C, 31(8), 1643-1652. https://doi.org/10.1016/j.msec.2011.07.009