DOI QR코드

DOI QR Code

MC3T3-E1 osteoblast adhesion to laser induced hydroxyapatite coating on Ti alloy

  • Huang, Lu (Department of Materials Science and Engineering, University of Tennessee) ;
  • Goddard, Samuel C. (Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee) ;
  • Soundarapandian, Santhanakrishnan (Laboratory for Laser Aided Additive and Subtractive Manufacturing, Department of Materials Science and Engineering, University of North Texas) ;
  • Cao, Yu (Department of Materials Science and Engineering, University of Tennessee) ;
  • Dahotre, Narendra B. (Laboratory for Laser Aided Additive and Subtractive Manufacturing, Department of Materials Science and Engineering, University of North Texas) ;
  • He, Wei (Department of Materials Science and Engineering, University of Tennessee)
  • Received : 2014.04.28
  • Accepted : 2014.06.30
  • Published : 2014.06.25

Abstract

An in vitro cell study evaluating cell adhesion to hydroxyapatite (HA) coated prosthetic Ti-6Al-4V alloy via laser treatment is presented in comparison with uncoated alloy. Based on our previous in vitro biocompatibility study, which demonstrated higher cell attachment and proliferation with MC3T3-E1 preosteoblast cells, the present investigation aims to reveal the effect of laser coating Ti alloy with HA on the adhesion strength of bone-forming cells against centrifugal forces. Remaining cells on different substrates after centrifugation were visualized using fluorescent staining. Semi-quantifications on the numbers of cells were conducted based on fluorescent images, which demonstrated higher numbers of cells retained on HA laser treated substrates post centrifugation. The results indicate potential increase in the normalized maximum force required to displace cells from HA coated surfaces versus uncoated control surface. The possible mechanisms that govern the enhancing effect were discussed, including surface roughness, chemistry, wettability, and protein adsorption. The improvement in cell adhesion through laser treatment with a biomimetic coating could be useful in reducing tissue damage at the prosthetic to bone junction and minimizing the loosening of prosthetics over time.

Keywords

Acknowledgement

Supported by : University of Tennessee

References

  1. Balasundaram, G., Sato, M. and Webster, T.J. (2006), "Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD", Biomaterials, 27(14), 2798-2805. https://doi.org/10.1016/j.biomaterials.2005.12.008
  2. Ball, M.D., Downes, S., Scotchford, C.A., Antonov, E.N., Bagratashvili, V.N., Popov, V.K., Lo, W.J., Grant, D.M. and Howdle, S.M. (2001), "Osteoblast growth on titanium foils coated with hydroxyapatite by pulsed laser ablation ," Biomaterials, 22(4), 337-347. https://doi.org/10.1016/S0142-9612(00)00189-7
  3. Ball, M., Grant, D.M., Lo, W.J. and Scotchford, C.A. (2008), "The effect of different surface morphology and roughness on osteoblast-like cells", J. Biomed. Mater. Res. A, 86A(3), 637-647. https://doi.org/10.1002/jbm.a.31652
  4. Boyan, B.D., Lohmann, C.H., Dean, D.D., Sylvia, V.L., Cochran, D.L. and Schwartz, Z. (2001), "Mechanisms involved in osteoblast response to implant surface morphology", Annu. Rev. Mater. Res., 31(1), 357-371. https://doi.org/10.1146/annurev.matsci.31.1.357
  5. Chang, Y.L, Stanford, C.M., Wefel, J.S. and Keller, J.C. (1999), "Osteoblastic cell attachment to hydroxyapatite-coated implant surfaces in vitro", Int. J. Oral Maxillofac. Implants, 14(2), 239-247.
  6. Cui, F. and Luo, Z. (1999), "Biomaterials modification by ion-beam processing", Surf. Coat. Technol., 112(1), 278-285. https://doi.org/10.1016/S0257-8972(98)00763-4
  7. Cui, Z.D., Chen, M.F., Zhang, L.Y., Hu, R.X., Zhu, S.L. and Yang, X.J. (2008), "Improving the biocompatibility of NiTi alloy by chemical treatments: An in vitro evaluation in 3T3 human fibroblast cell", Mater. Sci. Eng. C, 28(7), 1117-1122. https://doi.org/10.1016/j.msec.2007.05.006
  8. Dahotre, N.B., Paital, S.R., Samant, A.N. and Daniel, C. (2010), "Wetting behaviour of laser synthetic surface microtextures on Ti-6Al-4V for bioapplication", Philos. T. Roy. Soc. A, 368(1917), 1863-1889. https://doi.org/10.1098/rsta.2010.0003
  9. Dahotre, S., Vora, H., Rajamure, R.S., Huang, L., Banerjee, R., He, W. and Dahotre, N.B. (2014), "Laser induced nitrogen enhanced titanium surfaces for improved osseo-integration", Ann. Biomed. Eng., 42(1), 50-61. https://doi.org/10.1007/s10439-013-0898-z
  10. Deligianni, D.D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J. and Missirlis, Y.F. (2001), "Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption", Biomaterials, 22(11), 1241-1251. https://doi.org/10.1016/S0142-9612(00)00274-X
  11. Garcia, A.J., Ducheyne, P. and Boettiger, D. (1997), "Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials", Biomaterials, 18(16), 1091-1098. https://doi.org/10.1016/S0142-9612(97)00042-2
  12. Geetha, M., Singh, A.K., Asokamani, R., and Gogia, A.K. (2009), "Ti based biomaterials, the ultimate choice for orthopaedic implants - A review", Prog. Mater. Sci., 54(3) 397-425.
  13. Grinnell, F. and Feld, M.K. (1982), "Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody-binding and analysed during cell-adhesion in serum-containing medium", J. Biol. Chem., 257(9), 4888-4893.
  14. Hanawa, T. (1999), "In vivo metallic biomaterials and surface modification", Mater. Sci. Eng. A, 267(2), 260-266. https://doi.org/10.1016/S0921-5093(99)00101-X
  15. Huang, L., Cao, Z., Meyer, H.M., Liaw, P.K., Garlea, E., Dunlap, J.R., Zhang, T. and He, W. (2011), "Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness", Acta Biomater., 7(1), 395-405. https://doi.org/10.1016/j.actbio.2010.08.002
  16. Jagielski, J., Piatkowska, A., Aubert, P., Thome, L., Turos, A., Abdul Kader, A. (2006), "Ion implantation for surface modification of biomaterials", Surf. Coat. Technol., 200(22), 6355-6361. https://doi.org/10.1016/j.surfcoat.2005.11.005
  17. Kurella, A. and Dahotre, N.B. (2005), "Review paper: Surface modification for bioimplants: The role of laser surface engineering", J. Biomater. Appl., 20(1), 5-50. https://doi.org/10.1177/0885328205052974
  18. Liu, X., Chu, P.K. and Ding, C. (2004), "Surface modification of titanium, titanium alloys, and related materials for biomedical applications", Mater. Sci. Eng. R., 47(3), 49-121. https://doi.org/10.1016/j.mser.2004.11.001
  19. Marcotte, L. and Tabrizian, M. (2008), "Sensing surfaces: Challenges in studying the cell adhesion process and the cell adhesion forces on biomaterials", IRBM, 29(2), 77-88. https://doi.org/10.1016/j.rbmret.2007.11.019
  20. Nag, S., Paital, S.R., Nandawana, P., Mahdak, K., Ho, Y.H., Vora, H.D., Banerjee, R. and Dahotre, N.B. (2013), "Laser deposited biocompatible Ca-P coatings on Ti-6Al-4V: Microstructural evolution and thermal modeling", Mater. Sci. Eng. C, 33(1), 165-173. https://doi.org/10.1016/j.msec.2012.08.024
  21. Nayab, S.N., Jones, F.H. and Olsen, I. (2005), "Effects of calcium ion implantation on human bone cell interaction with titanium", Biomaterials, 26(23), 4717-4127. https://doi.org/10.1016/j.biomaterials.2004.11.044
  22. Nayab, S.N., Jones, F.H. and Olsen, I. (2007), "Effects of calcium ion-implantation of titanium on bone cell function in vitro", J. Biomed. Mater. Res. A, 83A(2), 296-302. https://doi.org/10.1002/jbm.a.31218
  23. Ochsenbein, A., Chai, F., Winter, S., Traisnel, M., Breme, J. and Hildebrand, H.F. (2008), "Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates", Acta Biomater., 4(5), 1506-1517. https://doi.org/10.1016/j.actbio.2008.03.012
  24. Okamoto, K., Matsuura T., Hosokawa R. and Akagawa Y. (1998), "RGD peptides regulate the specific adhesion scheme of osteoblasts to hydroxyapatite but not to titanium", J. Dent. Res., 77(3), 481-487. https://doi.org/10.1177/00220345980770030701
  25. Okazaki, Y., Rao, S., Ito, Y. and Tateishi, T. (1998), "Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V", Biomaterials, 19(13), 1197-1215. https://doi.org/10.1016/S0142-9612(97)00235-4
  26. Paital, S.R. and Dahotre, N.B. (2009), "Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies", Mater. Sci. Eng. R, 66(1), 1-70. https://doi.org/10.1016/j.mser.2009.05.001
  27. Paital, S.R., Cao, Z., He, W. and Dahotre, N.B. (2010a), "Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured Ca-P coating", Biofabrication, 2(2), 025001. https://doi.org/10.1088/1758-5082/2/2/025001
  28. Paital, S.R., He, W., Daniel, C. and Dahotre, N.B. (2010b), "Laser process effects on physical texture and wetting in implantable Ti-alloys", JOM, 62(6), 76-83.
  29. Paital, S.R., He, W. and Dahotre, N.B. (2010c), "Laser pulse dependent micro textured calcium phosphate coatings for improved wettability and cell compatibility", J. Mater. Sci-Mater. Med., 21(7), 2187-2200. https://doi.org/10.1007/s10856-010-4085-6
  30. Paital, S.R., Bunce, N., Nandwana, P., Honrao, C., Nag, S., He, W., Banerjee, R. and Dahotre, N.B. (2011), "Laser surface modification for synthesis of textured bioactive and biocompatible Ca-P coatings on Ti- 6Al-4V", J. Mater. Sci.-Mater. Med., 22(6), 1393-1406.
  31. Pendegrass, C.J., Middleton, C.A., Gordon, D., Jacob, J. and Blunn, G.W. (2010), "Measuring the strength of dermal fibroblast attachment to functionalized titanium alloys in vitro", J. Biomed. Mater. Res. A, 92A(3), 1028-1037.
  32. Pham, M.T., Reuther, H., Matz, W., Mueller, R,. Steiner, G., Oswald, S. and Zyganov, I. (2000), "Surface induced reactivity for titanium by ion implantation", J. Mater. Sci-Mater. Med., 11(6), 383-391. https://doi.org/10.1023/A:1008938125348
  33. Puleo, D. and Nanci, A. (1999), "Understanding and controlling the bone-implant interface", Biomaterials, 20(23), 2311-2321. https://doi.org/10.1016/S0142-9612(99)00160-X
  34. Reyes, C.D. and Garcia, A.J. (2003), "A centrifugation cell adhesion assay for high-throughput screening of biomaterial surfaces", J. Biomed. Mater. Res. A, 67A(1), 328-333. https://doi.org/10.1002/jbm.a.10122
  35. Robinson, H.J., Markaki, A.E., Collier, C.A. and Clyne, T.W. (2011), "Cell adhesion to plasma electrolytic oxidation (PEO) titania coatings, assessed using a centrifuging technique", J. Mech. Behav. Biomed. Mater., 4(8), 2103-2112. https://doi.org/10.1016/j.jmbbm.2011.07.009
  36. Stevens, M.M. and George, J.H. (2005), "Exploring and engineering the cell surface interface", Science, 310(5751), 1135-1138. https://doi.org/10.1126/science.1106587
  37. Tsui, Y.C., Doyle, C. and Clyne, T.W. (1998a), "Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels", Biomaterials, 19(22), 2015-2029. https://doi.org/10.1016/S0142-9612(98)00103-3
  38. Tsui, Y.C., Doyle, C. and Clyne, T.W. (1998b), "Plasma sprayed hydroxyapatite coatings on titanium substrates Part 2: optimisation of coating properties", Biomaterials, 19(22), 2031-2043. https://doi.org/10.1016/S0142-9612(98)00104-5
  39. Variola, F., Vetrone, F., Richert, L., Jedrzejowski, P., Yi, J.H., Zalzal, S., Clair, S., Sarkissian, A., Perepichka, D.F., Wuest, J.D., Rosei, F. and Nanci, A. (2009), "Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges", Small, 5(9), 996-1006. https://doi.org/10.1002/smll.200801186
  40. Wen, J., Leng, Y., Chen, J. and Zhang, C. (2000), "Chemical gradient in plasma-sprayed HA coatings", Biomaterials, 21(13), 1339-1343. https://doi.org/10.1016/S0142-9612(99)00273-2
  41. Yang, S.P., Yang, C.Y., Lee, T.M. and Lui, T.S. (2012), "Effects of calcium-phosphate topography on osteoblast mechanobiology determined using a cytodetacher", Mater. Sci. Eng. C, 32(2), 254-362. https://doi.org/10.1016/j.msec.2011.10.026
  42. Yang, Y.C. and Chang, E. (2003), "The bonding of plasma-sprayed hydroxyapatite coatings to titanium: effect of processing, porosity and residual stress", Thin Solid Film., 444(1), 260-275. https://doi.org/10.1016/S0040-6090(03)00810-1
  43. Yang, Y.L, Paital, S.R. and Dahotre, N.B. (2010a), "Wetting and in vitro bioactivity of laser processed CaP coating with presence and variation of $SiO_{2}$ on Ti-6Al-4V", Mater. Technol., 25(3-4), 137-142. https://doi.org/10.1179/175355510X12723642365287
  44. Yang, Y.L, Paital, S.R. and Dahotre, N.B. (2010b), "Effects of $SiO_{2}$ substitution on wettability of laser deposited Ca-P biocoating on Ti-6Al-4V", J. Mater. Sci.-Mater. Med., 21(9), 2511-2521. https://doi.org/10.1007/s10856-010-4105-6
  45. Yang, Y.L., Serpersu, K., He, W., Paital, S.R. and Dahotre, N.B. (2011), "Osteoblast interaction with laser cladded HA and $SiO_{2}$-HA coatings on Ti-6Al-4V", Mater. Sci. Eng. C, 31(8), 1643-1652. https://doi.org/10.1016/j.msec.2011.07.009