Acknowledgement
Supported by : Japan Society for the Promotion of Science (JSPS)
References
- Aikawa, T., Konno, T. and Ishihara, K. (2013), "Phospholipid polymer hydrogel microsphere modulates the cell cycle profile of encapsulated cells" Soft Matter, 9(18), 4628-4634. https://doi.org/10.1039/c3sm50394a
- Brizzi. M.F., Tarone, G. and Defilippi, P., (2012), "Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche", Curr. Opin. Cell Biol., 24(5), 645-651. https://doi.org/10.1016/j.ceb.2012.07.001
- Byambaa, B., Konno, T. and Ishihara, K. (2012), "Cell adhesion control on photoreactive phospholipid polymer surfaces", Colloid. Surf. B: Biointerfaces, 99(1), 1-6. https://doi.org/10.1016/j.colsurfb.2011.08.029
- Fukazawa, K. and Ishihara, K. (2009), "Nanofabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing", Biosens. Bioelectron., 25(3), 609-614. https://doi.org/10.1016/j.bios.2009.02.034
- Garg, T. and Goyal, A.K. (2014), "Biomaterial-based scaffolds- current status and future directions", Expert. Opin. Drug Deliv., 11(5), 767-789. https://doi.org/10.1517/17425247.2014.891014
- Gattazzo, F., Urciuolo, A. and Bonaldo, P. (2014), "Extracellular matrix: A dynamic microenvironment for stem cell niche", Biochim. Biophys. Acta, 1840(8), 2506-2519. https://doi.org/10.1016/j.bbagen.2014.01.010
- Grigsby, J.J., Blanch, H.W. and Prausnitz, J.M. (2002), "Effect of secondary structure on the potential of mean force for poly-L-lysine in the alpha-helix and beta-sheet conformations", Biophys. Chem., 99(2), 107-116. https://doi.org/10.1016/S0301-4622(02)00138-2
- Hyon, S.H., Nakajima, N., Sugai, H. and Matsumura, K. (2014), "Low cytotoxic tissue adhesive based on oxidized dextran and epsilon-poly-l-lysine", J. Biomed. Mater. Res. A, 102(8), 2511-2520. https://doi.org/10.1002/jbm.a.34923
- Ishihara, K. and Fukazawa, K. (2014), "2-Methacryloyloxyethyl phosphorylcholine polymers", Phosphorus based polymers: From Synthesis to applications, Eds. Monge, S. and David, G., The Royal Society of Chemistry, Cambridge, UK.
- Ishihara, K., Ishikawa, E., Iwasaki, Y. and Nakabayashi, N. (1999a), "Inhibition of cell adhesion on the substrate by coating with 2-methacryloyloxyethyl phosphorylcholine polymers", J. Biomater. Sci., Polym. Ed., 10(10), 1047-1061. https://doi.org/10.1163/156856299X00676
- Ishihara, K., Iwasaki, Y. and Nakabayashi, N. (1999b), "Polymeric lipid nanosphere constituted of poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate)", Polym. J., 31, 1231-1236. https://doi.org/10.1295/polymj.31.1231
- Ishihara, K., Nomura, H., Mihara, T., Kurita, K., Iwasaki, Y. and Nakabayashi, N. (1998), "Why do phospholipid polymers reduce protein adsorption?", J. Biomed. Mater. Res., 39, 323-330. https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C
- Ishihara, K., Oshida, H., Endo, Y., Ueda, T., Watanabe, A. and Nakabayashi, N. (1992), "Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism", J. Biomed. Mater. Res., 26(12) 1543-1552. https://doi.org/10.1002/jbm.820261202
- Ishihara, K., Ueda, T. and Nakabayashi, N. (1990), "Preparation of phospholipid polymers and their properties as polymer hydrogel membranes", Polym. J., 22(5), 355-360. https://doi.org/10.1295/polymj.22.355
- Ishihara, K., Ziats, N.P., Tierney, B.P, Nakabayashi, N. and Anderson, J. M. (1991) "Protein adsorption from human plasma is reduced on phospholipid polymers", J. Biomed. Mater. Res., 25(11), 1397-1407. https://doi.org/10.1002/jbm.820251107
- Iwasaki, Y. and Ishihara, K. (2012), "Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces", Sci. Technol. Adv. Mater., 13(6), 064101.
- Jia, X. and Kiick, K.L. (2009), "Hybrid multicomponent hydrogels for tissue engineering", Macromol. Biosci., 9(2), 140-156. https://doi.org/10.1002/mabi.200800284
- Kimura, M., Fukumoto, K., Watanabe, J., Takai, M. and Ishihara, K. (2005), "Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers", Biomater., 26(34), 6853-6862. https://doi.org/10.1016/j.biomaterials.2005.05.018
- Kiritoshi, Y. and Ishihara, K. (2004), "Synthesis of hydrophilic cross-linker having phosphorylcholine-like linkage for improvement of hydrogel properties", Polymer, 45(22), 7499-7504. https://doi.org/10.1016/j.polymer.2004.09.014
- Konno, T. and Ishihara, K. (2007), "Temporal and spatially controllable cell encapsulation using a water-soluble phospholipid polymer with phenylboronic acid moiety", Biomater., 28(10), 1770-1777. https://doi.org/10.1016/j.biomaterials.2006.12.017
- Konno, T., Watanabe, J. and Ishihara, K. (2003), "Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers", J. Biomed. Mater. Res., 65A(2), 210-215.
- Konno, T., Watanabe, J. and Ishihara, K. (2004), "Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups", Biomacromolecules, 5(2), 342-347. https://doi.org/10.1021/bm034356p
- Lewis, A.L. (2000), "Phosphorylcholine-based polymers and their use in the prevention of biofouling", Colloids Surf. B: Biointerfaces, 18(3), 261-275. https://doi.org/10.1016/S0927-7765(99)00152-6
- Lutolf, M.P. and Hubbell, J.A. (2005), "Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering", Nat. Biotechnol., 23(1), 47-55. https://doi.org/10.1038/nbt1055
- Makgoba, M.W., Bernard, A. and Sanders, M.E. (1992), "Cell adhesion/signalling: biology and clinical applications", Eur. J. Clin. Invest., 22(7), 443-453. https://doi.org/10.1111/j.1365-2362.1992.tb01489.x
- Mo, Y., Kubota, K. and Nishinari, K. (2000), "Rheological evidence of the gelation behavior of hyaluronangellan mixtures", Biorheology, 37(5-6), 401-408.
- Nishizawa, K., Takai, M. and Ishihara, K. (2011), "A bioconjugated phospholipid polymer biointerface with nanometer-scaled structure for highly sensitive immunoassays", Methods Mol. Biol., 751, 491-502. https://doi.org/10.1007/978-1-61779-151-2_31
- Oda, H., Konno, T. and Ishihara, K. (2013), "The use of the mechanical microenvironment of phospholipid polymer hydrogels to control cell behavior", Biomater., 34(24), 5891-5896. https://doi.org/10.1016/j.biomaterials.2013.04.015
- Place, E.S., George, J. H., Williams, C.K. and Stevens, M.M. (2009), "Synthetic polymer scaffolds for tissue engineering", Chem. Soc. Rev., 38(4), 1139-1151. https://doi.org/10.1039/b811392k
- Ross,o F, Giordano, A, Barbarisi, M and Barbarisi, A. (2004), "From cell-ECM interactions to tissue engineering", J. Cell Physiol., 99(2),174-180.
- Rowley, J.A., Madlambayan, G. and Mooney, D.J. (1999), "Alginate hydrogels as synthetic extracellular matrix materials", Biomater., 20(1), 45-53. https://doi.org/10.1016/S0142-9612(98)00107-0
- Sambu, S., Xu, X., Schiffer, H.A., Cui, Z.F. and Ye, H. (2011), "RGDS-fuctionalized alginates improve the survival rate of encapsulated embryonic stem cells during cryopreservation", Cryo. Lett., 32(5), 389-401.
- Sandvig, I., Karstensen, K., Rokstad, A.M., Aachmann, F.L., Formo, K., Sandvig, A., Skjak-Braek, G. and Strand, B.L. (2014) "RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications", J. Biomed. Mater. Res. A., doi: 10.1002/jbm.a.35230.
- Seo, J.H., Matsuno, R., Takai, M. and Ishihara, K. (2009), "Cell adhesion on phase-separated surface of block copolymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(dimethylsiloxane)", Biomater., 30(29), 5330-5340. https://doi.org/10.1016/j.biomaterials.2009.06.031
- Silva, E.A and Mooney, D.J. (2014), "Synthetic extracellular matrices for tissue engineering and regeneration", Curr. Top. Dev. Biol., 64, 181-205.
- Stock, U.A. and Mayer, J.E. Jr. (2001), "Tissue engineering of cardiac valves on the basis of PGA/PLA copolymers", J. Long Term Eff. Med. Implants, 11(3-4), 249-260.
- Ueda, T., Oshida, J., Kurita, K., Ishihara, K. and Nakabayashi, N. (1992), "Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility", Polym. J., 24, 1259-1269. https://doi.org/10.1295/polymj.24.1259
- Walter, N., Busch, T., Sefferlein, T. and Spatz, J.P. (2011), "Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network", Biointerphases, 6(2), 79-85. https://doi.org/10.1116/1.3601755
- Xu, Y., Sato, K., Mawatari, K., Konno, T., Jang, K., Ishihara, K. and Kitamori, T. (2010), "A microfluidic hydrogel capable of cell preservation without perfusion culture under cell-based assay conditions", Adv. Mater., 22(28), 3017-3021. https://doi.org/10.1002/adma.201000006
Cited by
- Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering vol.4, pp.12, 2014, https://doi.org/10.1021/acsabm.1c00932