DOI QR코드

DOI QR Code

Cross-linkable and water-soluble phospholipid polymer as artificial extracellular matrix

  • Maeta, Eri (Department of Materials Engineering, The University of Tokyo) ;
  • Ishihara, Kazuhiko (Department of Materials Engineering, The University of Tokyo)
  • Received : 2014.07.29
  • Accepted : 2014.09.17
  • Published : 2014.09.25

Abstract

The objective of this study is to prepare an artificial extracellular matrix (ECM) for cell culture by using polymer hydrogels. The polymer used is a cytocompatible water-soluble phospholipid polymer: poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-n-butyl methacrylate-p-nitrophenyloxycarbonyl poly(ethylene oxide) methacrylate (MEONP)] (PMBN). The hydrogels are prepared using a cross-linking reaction between PMBN and diamine compounds, which can easily react to the MEONP moiety under mild conditions. The most favorable diamine is the bis(3-aminopropyl) poly(ethylene oxide) (APEO). The effects of cross-linking density and the chemical structure of cross-linking molecules on the mechanical properties of the hydrogel are evaluated. The storage modulus of the hydrogel is tailored by tuning the PMBN concentration and the MEONP/amino group ratio. The porous structure of the hydrogel networks depends not only on these parameters but also on the reaction temperature. We prepare a hydrogel with $40-50{\mu}m$ diameter pores and more than 90 wt% swelling. The permeation of proteins through the hydrogel increases dramatically with an increase in pore size. To induce cell adhesion, the cell-attaching oligopeptide, RGDS, is immobilized onto the hydrogel using MEONP residue. Bovine pulmonary artery endothelial cells (BPAECs) are cultured on the hydrogel matrix and are able to migrate into the artificial matrix. Hence, the RGDS-modified PMBN hydrogel matrix with cross-linked APEO functions as an artificial ECM for growing cells for applications in tissue engineering.

Keywords

Acknowledgement

Supported by : Japan Society for the Promotion of Science (JSPS)

References

  1. Aikawa, T., Konno, T. and Ishihara, K. (2013), "Phospholipid polymer hydrogel microsphere modulates the cell cycle profile of encapsulated cells" Soft Matter, 9(18), 4628-4634. https://doi.org/10.1039/c3sm50394a
  2. Brizzi. M.F., Tarone, G. and Defilippi, P., (2012), "Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche", Curr. Opin. Cell Biol., 24(5), 645-651. https://doi.org/10.1016/j.ceb.2012.07.001
  3. Byambaa, B., Konno, T. and Ishihara, K. (2012), "Cell adhesion control on photoreactive phospholipid polymer surfaces", Colloid. Surf. B: Biointerfaces, 99(1), 1-6. https://doi.org/10.1016/j.colsurfb.2011.08.029
  4. Fukazawa, K. and Ishihara, K. (2009), "Nanofabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing", Biosens. Bioelectron., 25(3), 609-614. https://doi.org/10.1016/j.bios.2009.02.034
  5. Garg, T. and Goyal, A.K. (2014), "Biomaterial-based scaffolds- current status and future directions", Expert. Opin. Drug Deliv., 11(5), 767-789. https://doi.org/10.1517/17425247.2014.891014
  6. Gattazzo, F., Urciuolo, A. and Bonaldo, P. (2014), "Extracellular matrix: A dynamic microenvironment for stem cell niche", Biochim. Biophys. Acta, 1840(8), 2506-2519. https://doi.org/10.1016/j.bbagen.2014.01.010
  7. Grigsby, J.J., Blanch, H.W. and Prausnitz, J.M. (2002), "Effect of secondary structure on the potential of mean force for poly-L-lysine in the alpha-helix and beta-sheet conformations", Biophys. Chem., 99(2), 107-116. https://doi.org/10.1016/S0301-4622(02)00138-2
  8. Hyon, S.H., Nakajima, N., Sugai, H. and Matsumura, K. (2014), "Low cytotoxic tissue adhesive based on oxidized dextran and epsilon-poly-l-lysine", J. Biomed. Mater. Res. A, 102(8), 2511-2520. https://doi.org/10.1002/jbm.a.34923
  9. Ishihara, K. and Fukazawa, K. (2014), "2-Methacryloyloxyethyl phosphorylcholine polymers", Phosphorus based polymers: From Synthesis to applications, Eds. Monge, S. and David, G., The Royal Society of Chemistry, Cambridge, UK.
  10. Ishihara, K., Ishikawa, E., Iwasaki, Y. and Nakabayashi, N. (1999a), "Inhibition of cell adhesion on the substrate by coating with 2-methacryloyloxyethyl phosphorylcholine polymers", J. Biomater. Sci., Polym. Ed., 10(10), 1047-1061. https://doi.org/10.1163/156856299X00676
  11. Ishihara, K., Iwasaki, Y. and Nakabayashi, N. (1999b), "Polymeric lipid nanosphere constituted of poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate)", Polym. J., 31, 1231-1236. https://doi.org/10.1295/polymj.31.1231
  12. Ishihara, K., Nomura, H., Mihara, T., Kurita, K., Iwasaki, Y. and Nakabayashi, N. (1998), "Why do phospholipid polymers reduce protein adsorption?", J. Biomed. Mater. Res., 39, 323-330. https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C
  13. Ishihara, K., Oshida, H., Endo, Y., Ueda, T., Watanabe, A. and Nakabayashi, N. (1992), "Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism", J. Biomed. Mater. Res., 26(12) 1543-1552. https://doi.org/10.1002/jbm.820261202
  14. Ishihara, K., Ueda, T. and Nakabayashi, N. (1990), "Preparation of phospholipid polymers and their properties as polymer hydrogel membranes", Polym. J., 22(5), 355-360. https://doi.org/10.1295/polymj.22.355
  15. Ishihara, K., Ziats, N.P., Tierney, B.P, Nakabayashi, N. and Anderson, J. M. (1991) "Protein adsorption from human plasma is reduced on phospholipid polymers", J. Biomed. Mater. Res., 25(11), 1397-1407. https://doi.org/10.1002/jbm.820251107
  16. Iwasaki, Y. and Ishihara, K. (2012), "Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces", Sci. Technol. Adv. Mater., 13(6), 064101.
  17. Jia, X. and Kiick, K.L. (2009), "Hybrid multicomponent hydrogels for tissue engineering", Macromol. Biosci., 9(2), 140-156. https://doi.org/10.1002/mabi.200800284
  18. Kimura, M., Fukumoto, K., Watanabe, J., Takai, M. and Ishihara, K. (2005), "Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers", Biomater., 26(34), 6853-6862. https://doi.org/10.1016/j.biomaterials.2005.05.018
  19. Kiritoshi, Y. and Ishihara, K. (2004), "Synthesis of hydrophilic cross-linker having phosphorylcholine-like linkage for improvement of hydrogel properties", Polymer, 45(22), 7499-7504. https://doi.org/10.1016/j.polymer.2004.09.014
  20. Konno, T. and Ishihara, K. (2007), "Temporal and spatially controllable cell encapsulation using a water-soluble phospholipid polymer with phenylboronic acid moiety", Biomater., 28(10), 1770-1777. https://doi.org/10.1016/j.biomaterials.2006.12.017
  21. Konno, T., Watanabe, J. and Ishihara, K. (2003), "Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers", J. Biomed. Mater. Res., 65A(2), 210-215.
  22. Konno, T., Watanabe, J. and Ishihara, K. (2004), "Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups", Biomacromolecules, 5(2), 342-347. https://doi.org/10.1021/bm034356p
  23. Lewis, A.L. (2000), "Phosphorylcholine-based polymers and their use in the prevention of biofouling", Colloids Surf. B: Biointerfaces, 18(3), 261-275. https://doi.org/10.1016/S0927-7765(99)00152-6
  24. Lutolf, M.P. and Hubbell, J.A. (2005), "Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering", Nat. Biotechnol., 23(1), 47-55. https://doi.org/10.1038/nbt1055
  25. Makgoba, M.W., Bernard, A. and Sanders, M.E. (1992), "Cell adhesion/signalling: biology and clinical applications", Eur. J. Clin. Invest., 22(7), 443-453. https://doi.org/10.1111/j.1365-2362.1992.tb01489.x
  26. Mo, Y., Kubota, K. and Nishinari, K. (2000), "Rheological evidence of the gelation behavior of hyaluronangellan mixtures", Biorheology, 37(5-6), 401-408.
  27. Nishizawa, K., Takai, M. and Ishihara, K. (2011), "A bioconjugated phospholipid polymer biointerface with nanometer-scaled structure for highly sensitive immunoassays", Methods Mol. Biol., 751, 491-502. https://doi.org/10.1007/978-1-61779-151-2_31
  28. Oda, H., Konno, T. and Ishihara, K. (2013), "The use of the mechanical microenvironment of phospholipid polymer hydrogels to control cell behavior", Biomater., 34(24), 5891-5896. https://doi.org/10.1016/j.biomaterials.2013.04.015
  29. Place, E.S., George, J. H., Williams, C.K. and Stevens, M.M. (2009), "Synthetic polymer scaffolds for tissue engineering", Chem. Soc. Rev., 38(4), 1139-1151. https://doi.org/10.1039/b811392k
  30. Ross,o F, Giordano, A, Barbarisi, M and Barbarisi, A. (2004), "From cell-ECM interactions to tissue engineering", J. Cell Physiol., 99(2),174-180.
  31. Rowley, J.A., Madlambayan, G. and Mooney, D.J. (1999), "Alginate hydrogels as synthetic extracellular matrix materials", Biomater., 20(1), 45-53. https://doi.org/10.1016/S0142-9612(98)00107-0
  32. Sambu, S., Xu, X., Schiffer, H.A., Cui, Z.F. and Ye, H. (2011), "RGDS-fuctionalized alginates improve the survival rate of encapsulated embryonic stem cells during cryopreservation", Cryo. Lett., 32(5), 389-401.
  33. Sandvig, I., Karstensen, K., Rokstad, A.M., Aachmann, F.L., Formo, K., Sandvig, A., Skjak-Braek, G. and Strand, B.L. (2014) "RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications", J. Biomed. Mater. Res. A., doi: 10.1002/jbm.a.35230.
  34. Seo, J.H., Matsuno, R., Takai, M. and Ishihara, K. (2009), "Cell adhesion on phase-separated surface of block copolymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(dimethylsiloxane)", Biomater., 30(29), 5330-5340. https://doi.org/10.1016/j.biomaterials.2009.06.031
  35. Silva, E.A and Mooney, D.J. (2014), "Synthetic extracellular matrices for tissue engineering and regeneration", Curr. Top. Dev. Biol., 64, 181-205.
  36. Stock, U.A. and Mayer, J.E. Jr. (2001), "Tissue engineering of cardiac valves on the basis of PGA/PLA copolymers", J. Long Term Eff. Med. Implants, 11(3-4), 249-260.
  37. Ueda, T., Oshida, J., Kurita, K., Ishihara, K. and Nakabayashi, N. (1992), "Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility", Polym. J., 24, 1259-1269. https://doi.org/10.1295/polymj.24.1259
  38. Walter, N., Busch, T., Sefferlein, T. and Spatz, J.P. (2011), "Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network", Biointerphases, 6(2), 79-85. https://doi.org/10.1116/1.3601755
  39. Xu, Y., Sato, K., Mawatari, K., Konno, T., Jang, K., Ishihara, K. and Kitamori, T. (2010), "A microfluidic hydrogel capable of cell preservation without perfusion culture under cell-based assay conditions", Adv. Mater., 22(28), 3017-3021. https://doi.org/10.1002/adma.201000006

Cited by

  1. Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering vol.4, pp.12, 2014, https://doi.org/10.1021/acsabm.1c00932