DOI QR코드

DOI QR Code

Micro-hardness and Young's modulus of a thermo-mechanically processed biomedical titanium alloy

  • Mohammed, Mohsin Talib (Department of mechanical engineering, Faculty of engineering, Kufa University) ;
  • Khan, Zahid A. (Department of mechanical engineering, Jamia Millia Islamia (A central University)) ;
  • M., Geetha (Centre for biomaterials science and technology, SMBS, VIT University) ;
  • Siddiquee, Arshad N. (Department of mechanical engineering, Jamia Millia Islamia (A central University))
  • Received : 2014.06.06
  • Accepted : 2014.09.30
  • Published : 2014.09.25

Abstract

This paper presents a study on the influence of different thermo-mechanical processing (TMP) parameters on some required properties such as micro-hardness and Young's modulus of a novel near ${\beta}$ alloy Ti-20.6Nb-13.6Zr-0.5V (TNZV). The TMP scheme comprises of hot working above and below ${\beta}$ phase, solutionizing treatment above and below ${\beta}$ phase coupled with different cooling rates. Factorial design of experiment is used to systematically collect data for micro-hardness and Young's modulus. Validity of assumptions related to the collected data is checked through several diagnostic tests. The analysis of variance (ANOVA) is used to determine the significance of the main and interaction effects. Finally, optimization of the TMP process parameters is also done to achieve optimum values of the micro-hardness and Young's modulus.

Keywords

References

  1. Abdel-Hady, M., Hinoshita, K. and Morinaga, M. (2006), "General approach to phase stability and elastic properties of $\beta$-type Ti alloys using electronic parameters", Scr. Mater., 55(5), 477-480. https://doi.org/10.1016/j.scriptamat.2006.04.022
  2. Ahmed, T., and Rack, H.J. (1996), "Martensitic transformations in Ti-(16-26 at%) Nb, Alloys", J. Mater. Sci., 31(16), 4267-4276. https://doi.org/10.1007/BF00356449
  3. Bache, M.R., and Evans, W.J. (2001), "Impact of texture on mechanical properties in an advanced titanium alloy", Mater. Sci. Eng. A, 319, 409-414.
  4. Banerjee, D. and Krishnan, R.V. (1981), Challenges in Alloy Design: Titanium for the Aerospace Industry, Eds. Ranganathan, S., Arunachalam, V.S., Cahn, R.W., Alloy Design, Indian Academy of Sciences, Bangalore, India.
  5. Banumathy, S., Prasad, K.S., Mandal, R.K. and Singh, A.K. (2011), "Effect of thermomechanical processing on evolution of various phases in Ti-Nb alloys", Bull. Mater. Sci., 34(7), 1421-1434. https://doi.org/10.1007/s12034-011-0338-3
  6. Been, J. and Grauman, J.S. (2000), Titanium and Titanium Alloys, Uhlig's Corrosion Handbook, John & Wiley, Inc., New York, USA.
  7. Burgers, W. (1934), "On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium", Physica, 1(7-12), 561-586. https://doi.org/10.1016/S0031-8914(34)80244-3
  8. Boyer, R., Welsch, G. and Collings, E.W. (1994), Materials properties hand book: titanium alloys, First Edition, ASM International, Oh, USA.
  9. Collings, E.W. (1984), Physical metallurgy of titanium alloys, ASM International, Oh, USA.
  10. Cui W.F. and Guo A.H. (2009), "Microstructures and properties of biomedical TiNbZrFe titanium alloy under aging conditions", Mater. Sci. Eng. A, 527(1), 258-262. https://doi.org/10.1016/j.msea.2009.08.057
  11. Degarmo Paul, E., Black, J.T. and Kohser Ronald, A. (2003), Materials and processes in manufacturing, Wiley, Germany.
  12. Ding, R., Guo, Z.X. and Wilson, A. (2002), "Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing", Mater. Sci. Eng. A, 327(2), 233-245. https://doi.org/10.1016/S0921-5093(01)01531-3
  13. Freese, H.L., Volas, M.G. and Wood, J.R. (2001), Titanium in Medicine, Eds. Brunette, D.M., Tengvall, P., Texfor, M. and Thomsen, P., Springer, New York, USA.
  14. Gil, F.J. and Planel, J.A. (2000), "Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys", Mater. Sci. Eng. A, 283(1), 17-24. https://doi.org/10.1016/S0921-5093(00)00731-0
  15. Hao, Y.L., Niinomi, M., Kuroda, D., Zhou, Y.L. Fukunaga, K. and Suzuki, A. (2002), "Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to $\alpha$′′ martensite", Metall. Mater. Trans. A, 33(10), 3137-3144. https://doi.org/10.1007/s11661-002-0299-7
  16. Ho W.F., Ju, C.P. and Lin, J. (1999), "Structure and properties of cast binary Ti-Mo alloys", Biomater, 20(22), 2115-2122. https://doi.org/10.1016/S0142-9612(99)00114-3
  17. Ikehata, H., Nagasako, N., Furuta, T., Fukumoto, A., Miwa, K. and Saito, T. (2004), "First-principles calculations for development of low elastic modulus Ti alloys", Phys. Rev. B, 70(17), 174113-174118. https://doi.org/10.1103/PhysRevB.70.174113
  18. Lu, J.W., Zhao, Y.O., Ge, P. and Niu, H.Z. (2013), "Microstructure and beta grain growth behavior of Ti-Mo alloys solution treated", Mater. Charact., 84, 105-111. https://doi.org/10.1016/j.matchar.2013.07.014
  19. Karthega, M., Raman, V. and Rajendran, N. (2007), "Influence of potential on the electrochemical behaviour of $\beta$ titanium alloys in Hank's solution", Acta Biomater., 3, 1019-1023. https://doi.org/10.1016/j.actbio.2007.02.009
  20. Kuhn, H. and Medlin, D. (1972), Mechanical Testing and Evaluation, Metals Handbook, Vol. 8, ASM International, Oh, USA.
  21. Lee, Y.T. and Welsch, G. (1990), "Young modulus and damping of Ti-6Al-4V alloy as a function of heat treatment and oxygen content", Mater. Sci. Eng. A., 128(1), 77-89. https://doi.org/10.1016/0921-5093(90)90097-M
  22. Lonardelli, I., Gey, N., Wenk, H.R., Humbert, M., Vogel, S.C. and Lutterotti, L. (2007), "In situ observation of texture evolution during $\alpha$$\rightarrow$$\beta$ and $\beta$$\rightarrow $$\alpha$ phase transformations in titanium alloys investigated by neutron diffraction", Acta Mater., 55(17), 5718-5727. https://doi.org/10.1016/j.actamat.2007.06.017
  23. Long, M. and Rack, H.J. (1998), "Titanium alloys in total joint replacement-a materials science perspective", Biomater., 19(18), 1621-1639. https://doi.org/10.1016/S0142-9612(97)00146-4
  24. Majumdar, P. (2012), "Effects of heat treatment on evolution of microstructure of boron free and boron containing biomedical Ti-13Zr-13Nb alloys", Micron, 43(8), 876-886. https://doi.org/10.1016/j.micron.2012.03.001
  25. Majumdar, P., Singh, S.B., and Chakraborty, M. (2011), "The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications", J. Mech. Behav. Biomed. Mater., 4(7), 1132-1144. https://doi.org/10.1016/j.jmbbm.2011.03.023
  26. Ahmed, M., Gazder, A.A., Savvakin, D.G., Ivasishin, O.M. and Pereloma, E.V. (2012), "Microstructure evolution and alloying elements distribution between the phases in powder near-$\beta$ titanium alloys during thermo-mechanical processing", J. Mater. Sci., 47(19), 7013-7025. https://doi.org/10.1007/s10853-012-6652-3
  27. Mantani, Y. and Tajima, M. (2006), "Phase transformation of quenched $\alpha$′′ martensite by aging in Ti-Nb alloys", Mater. Sci. Eng. A, 438-440, 315-319. https://doi.org/10.1016/j.msea.2006.02.180
  28. Niinomi, M. (2002), "Recent metallic materials for biomedical applications", Met. Mater. Trans. A, 33(3), 477-486.
  29. Niinomi, M. (2003), "Recent research and development in titanium alloys for biomedical applications and healthcare goods", Sci. Technol. Adv. Mater., 4(5), 445-454. https://doi.org/10.1016/j.stam.2003.09.002
  30. Raabe, D., Sander, B., Friak, M., Ma, D. and Neugebauer, J. (2007), "Theory-guided bottom-up design of $\beta$-titanium alloys as biomaterials based on first principles calculations: Theory and experiments", Acta Mater., 55(13), 4475-4487. https://doi.org/10.1016/j.actamat.2007.04.024
  31. Song Y., Xu D. S., Yang R., Li., D., Wu, W.T. and Guo, Z.X. (1999), "Theoretical study of the effects of alloying elements on the strength and modulus of $\beta$-Type bio-titanium alloys", Mater. Sci. Eng. A., 260(1- 2), 269-274. https://doi.org/10.1016/S0921-5093(98)00886-7
  32. Lee, T., Heo, Y.K. and Lee, C.S. (2013), "Microstructure tailoring to enhance strength and ductility in Ti-13Nb-13Zr for biomedical application", Scripta Mater., 69(11-12), 785-788. https://doi.org/10.1016/j.scriptamat.2013.08.028
  33. Tang, X., Ahmed, T. and Rack, H.J. (2000), "Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys", J. Mater. Sci., 35(7), 1805-1811. https://doi.org/10.1023/A:1004792922155
  34. Wang, K. (1996), "The use of titanium for medical applications in the USA", Mater. Sci. Eng. A, 213(1-2), 134-137. https://doi.org/10.1016/0921-5093(96)10243-4
  35. Weaver, M.L. and Garmestani, H. (1998), "Microstructures and mechanical properties of commercial titanium foils processed via the melt overflow process", Mater. Sci. Eng. A., 247, 229-238. https://doi.org/10.1016/S0921-5093(97)00727-2
  36. Yang, G. and Zhang, T. (2005), "Phase transformation and mechanical properties of the $Ti_{50}Zr_{30}Nb_{10}Ta_{10}$ alloy with low modulus and biocompatible", J. Alloys Compd., 392(1-2), 291-294. https://doi.org/10.1016/j.jallcom.2004.08.099

Cited by

  1. Investigations on the Biomechanical Compatibility of a Novel Titanium Alloy vol.4, pp.9, 2017, https://doi.org/10.1016/j.matpr.2017.06.394
  2. Thermo mechanical analysis of a ceramic coated piston used in a diesel engine vol.21, pp.2, 2016, https://doi.org/10.12989/scs.2016.21.2.429
  3. Scientific Approaches to the Development of Titanium-Based Alloys for Medical Implants vol.299, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/ssp.299.462