References
-
Abdel-Hady, M., Hinoshita, K. and Morinaga, M. (2006), "General approach to phase stability and elastic properties of
$\beta$ -type Ti alloys using electronic parameters", Scr. Mater., 55(5), 477-480. https://doi.org/10.1016/j.scriptamat.2006.04.022 - Ahmed, T., and Rack, H.J. (1996), "Martensitic transformations in Ti-(16-26 at%) Nb, Alloys", J. Mater. Sci., 31(16), 4267-4276. https://doi.org/10.1007/BF00356449
- Bache, M.R., and Evans, W.J. (2001), "Impact of texture on mechanical properties in an advanced titanium alloy", Mater. Sci. Eng. A, 319, 409-414.
- Banerjee, D. and Krishnan, R.V. (1981), Challenges in Alloy Design: Titanium for the Aerospace Industry, Eds. Ranganathan, S., Arunachalam, V.S., Cahn, R.W., Alloy Design, Indian Academy of Sciences, Bangalore, India.
- Banumathy, S., Prasad, K.S., Mandal, R.K. and Singh, A.K. (2011), "Effect of thermomechanical processing on evolution of various phases in Ti-Nb alloys", Bull. Mater. Sci., 34(7), 1421-1434. https://doi.org/10.1007/s12034-011-0338-3
- Been, J. and Grauman, J.S. (2000), Titanium and Titanium Alloys, Uhlig's Corrosion Handbook, John & Wiley, Inc., New York, USA.
- Burgers, W. (1934), "On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium", Physica, 1(7-12), 561-586. https://doi.org/10.1016/S0031-8914(34)80244-3
- Boyer, R., Welsch, G. and Collings, E.W. (1994), Materials properties hand book: titanium alloys, First Edition, ASM International, Oh, USA.
- Collings, E.W. (1984), Physical metallurgy of titanium alloys, ASM International, Oh, USA.
- Cui W.F. and Guo A.H. (2009), "Microstructures and properties of biomedical TiNbZrFe titanium alloy under aging conditions", Mater. Sci. Eng. A, 527(1), 258-262. https://doi.org/10.1016/j.msea.2009.08.057
- Degarmo Paul, E., Black, J.T. and Kohser Ronald, A. (2003), Materials and processes in manufacturing, Wiley, Germany.
- Ding, R., Guo, Z.X. and Wilson, A. (2002), "Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing", Mater. Sci. Eng. A, 327(2), 233-245. https://doi.org/10.1016/S0921-5093(01)01531-3
- Freese, H.L., Volas, M.G. and Wood, J.R. (2001), Titanium in Medicine, Eds. Brunette, D.M., Tengvall, P., Texfor, M. and Thomsen, P., Springer, New York, USA.
- Gil, F.J. and Planel, J.A. (2000), "Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys", Mater. Sci. Eng. A, 283(1), 17-24. https://doi.org/10.1016/S0921-5093(00)00731-0
-
Hao, Y.L., Niinomi, M., Kuroda, D., Zhou, Y.L. Fukunaga, K. and Suzuki, A. (2002), "Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to
$\alpha$ ′′ martensite", Metall. Mater. Trans. A, 33(10), 3137-3144. https://doi.org/10.1007/s11661-002-0299-7 - Ho W.F., Ju, C.P. and Lin, J. (1999), "Structure and properties of cast binary Ti-Mo alloys", Biomater, 20(22), 2115-2122. https://doi.org/10.1016/S0142-9612(99)00114-3
- Ikehata, H., Nagasako, N., Furuta, T., Fukumoto, A., Miwa, K. and Saito, T. (2004), "First-principles calculations for development of low elastic modulus Ti alloys", Phys. Rev. B, 70(17), 174113-174118. https://doi.org/10.1103/PhysRevB.70.174113
- Lu, J.W., Zhao, Y.O., Ge, P. and Niu, H.Z. (2013), "Microstructure and beta grain growth behavior of Ti-Mo alloys solution treated", Mater. Charact., 84, 105-111. https://doi.org/10.1016/j.matchar.2013.07.014
-
Karthega, M., Raman, V. and Rajendran, N. (2007), "Influence of potential on the electrochemical behaviour of
$\beta$ titanium alloys in Hank's solution", Acta Biomater., 3, 1019-1023. https://doi.org/10.1016/j.actbio.2007.02.009 - Kuhn, H. and Medlin, D. (1972), Mechanical Testing and Evaluation, Metals Handbook, Vol. 8, ASM International, Oh, USA.
- Lee, Y.T. and Welsch, G. (1990), "Young modulus and damping of Ti-6Al-4V alloy as a function of heat treatment and oxygen content", Mater. Sci. Eng. A., 128(1), 77-89. https://doi.org/10.1016/0921-5093(90)90097-M
-
Lonardelli, I., Gey, N., Wenk, H.R., Humbert, M., Vogel, S.C. and Lutterotti, L. (2007), "In situ observation of texture evolution during
$\alpha$ $\rightarrow$ $\beta$ and$\beta$ $\rightarrow $ $\alpha$ phase transformations in titanium alloys investigated by neutron diffraction", Acta Mater., 55(17), 5718-5727. https://doi.org/10.1016/j.actamat.2007.06.017 - Long, M. and Rack, H.J. (1998), "Titanium alloys in total joint replacement-a materials science perspective", Biomater., 19(18), 1621-1639. https://doi.org/10.1016/S0142-9612(97)00146-4
- Majumdar, P. (2012), "Effects of heat treatment on evolution of microstructure of boron free and boron containing biomedical Ti-13Zr-13Nb alloys", Micron, 43(8), 876-886. https://doi.org/10.1016/j.micron.2012.03.001
- Majumdar, P., Singh, S.B., and Chakraborty, M. (2011), "The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications", J. Mech. Behav. Biomed. Mater., 4(7), 1132-1144. https://doi.org/10.1016/j.jmbbm.2011.03.023
-
Ahmed, M., Gazder, A.A., Savvakin, D.G., Ivasishin, O.M. and Pereloma, E.V. (2012), "Microstructure evolution and alloying elements distribution between the phases in powder near-
$\beta$ titanium alloys during thermo-mechanical processing", J. Mater. Sci., 47(19), 7013-7025. https://doi.org/10.1007/s10853-012-6652-3 -
Mantani, Y. and Tajima, M. (2006), "Phase transformation of quenched
$\alpha$ ′′ martensite by aging in Ti-Nb alloys", Mater. Sci. Eng. A, 438-440, 315-319. https://doi.org/10.1016/j.msea.2006.02.180 - Niinomi, M. (2002), "Recent metallic materials for biomedical applications", Met. Mater. Trans. A, 33(3), 477-486.
- Niinomi, M. (2003), "Recent research and development in titanium alloys for biomedical applications and healthcare goods", Sci. Technol. Adv. Mater., 4(5), 445-454. https://doi.org/10.1016/j.stam.2003.09.002
-
Raabe, D., Sander, B., Friak, M., Ma, D. and Neugebauer, J. (2007), "Theory-guided bottom-up design of
$\beta$ -titanium alloys as biomaterials based on first principles calculations: Theory and experiments", Acta Mater., 55(13), 4475-4487. https://doi.org/10.1016/j.actamat.2007.04.024 -
Song Y., Xu D. S., Yang R., Li., D., Wu, W.T. and Guo, Z.X. (1999), "Theoretical study of the effects of alloying elements on the strength and modulus of
$\beta$ -Type bio-titanium alloys", Mater. Sci. Eng. A., 260(1- 2), 269-274. https://doi.org/10.1016/S0921-5093(98)00886-7 - Lee, T., Heo, Y.K. and Lee, C.S. (2013), "Microstructure tailoring to enhance strength and ductility in Ti-13Nb-13Zr for biomedical application", Scripta Mater., 69(11-12), 785-788. https://doi.org/10.1016/j.scriptamat.2013.08.028
- Tang, X., Ahmed, T. and Rack, H.J. (2000), "Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys", J. Mater. Sci., 35(7), 1805-1811. https://doi.org/10.1023/A:1004792922155
- Wang, K. (1996), "The use of titanium for medical applications in the USA", Mater. Sci. Eng. A, 213(1-2), 134-137. https://doi.org/10.1016/0921-5093(96)10243-4
- Weaver, M.L. and Garmestani, H. (1998), "Microstructures and mechanical properties of commercial titanium foils processed via the melt overflow process", Mater. Sci. Eng. A., 247, 229-238. https://doi.org/10.1016/S0921-5093(97)00727-2
-
Yang, G. and Zhang, T. (2005), "Phase transformation and mechanical properties of the
$Ti_{50}Zr_{30}Nb_{10}Ta_{10}$ alloy with low modulus and biocompatible", J. Alloys Compd., 392(1-2), 291-294. https://doi.org/10.1016/j.jallcom.2004.08.099
Cited by
- Investigations on the Biomechanical Compatibility of a Novel Titanium Alloy vol.4, pp.9, 2017, https://doi.org/10.1016/j.matpr.2017.06.394
- Thermo mechanical analysis of a ceramic coated piston used in a diesel engine vol.21, pp.2, 2016, https://doi.org/10.12989/scs.2016.21.2.429
- Scientific Approaches to the Development of Titanium-Based Alloys for Medical Implants vol.299, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/ssp.299.462