DOI QR코드

DOI QR Code

Role of modern 3D echocardiography in valvular heart disease

  • Shiota, Takahiro (Department of Medicine, Heart Institute, Cedars-Sinai Medical Center and University of California)
  • Received : 2014.10.01
  • Accepted : 2014.10.05
  • Published : 2014.11.01

Abstract

Three-dimensional (3D) echocardiography has been conceived as one of the most promising methods for the diagnosis of valvular heart disease, and recently has become an integral clinical tool thanks to the development of high quality real-time transesophageal echocardiography (TEE). In particular, for mitral valve diseases, this new approach has proven to be the most unique, powerful, and convincing method for understanding the complicated anatomy of the mitral valve and its dynamism. The method has been useful for surgical management, including robotic mitral valve repair. Moreover, this method has become indispensable for nonsurgical mitral procedures such as edge to edge mitral repair and transcatheter closure of paravaluvular leaks. In addition, color Doppler 3D echo has been valuable to identify the location of the regurgitant orifice and the severity of the mitral regurgitation. For aortic and tricuspid valve diseases, this method may not be quite as valuable as for the mitral valve. However, the necessity of 3D echo is recognized for certain situations even for these valves, such as for evaluating the aortic annulus for transcatheter aortic valve implantation. It is now clear that this method, especially with the continued development of real-time 3D TEE technology, will enhance the diagnosis and management of patients with these valvular heart diseases.

Keywords

References

  1. Hozumi T, Yoshikawa J, Yoshida K, Akasaka T, Takagi T, Yamamuro A. Assessment of flail mitral leaflets by dynamic three-dimensional echocardiographic imaging. Am J Cardiol 1997;79:223-225. https://doi.org/10.1016/S0002-9149(96)00721-7
  2. Chauvel C, Bogino E, Clerc P, et al. Usefulness of three-dimensional echocardiography for the evaluation of mitral valve prolapse: an intraoperative study. J Heart Valve Dis 2000;9:341-349.
  3. Macnab A, Jenkins NP, Bridgewater BJ, et al. Three-dimensional echocardiography is superior to multiplane transoesophageal echo in the assessment of regurgitant mitral valve morphology. Eur J Echocardiogr 2004;5:212-222. https://doi.org/10.1016/j.euje.2004.01.005
  4. Macnab A, Jenkins NP, Ewington I, et al. A method for the morphological analysis of the regurgitant mitral valve using three dimensional echocardiography. Heart 2004;90:771-776. https://doi.org/10.1136/hrt.2003.013565
  5. Delabays A, Jeanrenaud X, Chassot PG, Von Segesser LK, Kappenberger L. Localization and quantification of mitral valve prolapse using three-dimensional echocardiography. Eur J Echocardiogr 2004;5:422-429. https://doi.org/10.1016/j.euje.2004.03.007
  6. Sugeng L, Coon P, Weinert L, et al. Use of real-time 3-dimensional transthoracic echocardiography in the evaluation of mitral valve disease. J Am Soc Echocardiogr 2006;19:413-421. https://doi.org/10.1016/j.echo.2005.11.016
  7. Ryan LP, Salgo IS, Gorman RC, Gorman JH 3rd. The emerging role of three-dimensional echocardiography in mitral valve repair. Semin Thorac Cardiovasc Surg 2006;18:126-134. https://doi.org/10.1053/j.semtcvs.2006.07.002
  8. Pepi M, Tamborini G, Maltagliati A, et al. Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol 2006;48:2524-2530. https://doi.org/10.1016/j.jacc.2006.02.079
  9. Agricola E, Oppizzi M, Pisani M, Maisano F, Margonato A. Accuracy of real-time 3D echocardiography in the evaluation of functional anatomy of mitral regurgitation. Int J Cardiol 2008;127:342-349. https://doi.org/10.1016/j.ijcard.2007.05.010
  10. Hirata K, Pulerwitz T, Sciacca R, et al. Clinical utility of new real time three-dimensional transthoracic echocardiography in assessment of mitral valve prolapse. Echocardiography 2008;25:482-488. https://doi.org/10.1111/j.1540-8175.2008.00630.x
  11. Sugeng L, Shernan SK, Salgo IS, et al. Live 3-dimensional transesophageal echocardiography initial experience using the fully-sampled matrix array probe. J Am Coll Cardiol 2008;52:446-449. https://doi.org/10.1016/j.jacc.2008.04.038
  12. Gutierrez-Chico JL, Zamorano Gomez JL, Rodrigo-Lopez JL, et al. Accuracy of real-time 3-dimensional echocardiography in the assessment of mitral prolapse: is transesophageal echocardiography still mandatory? Am Heart J 2008;155:694-698. https://doi.org/10.1016/j.ahj.2007.10.045
  13. Zakkar M, Patni R, Punjabi PP. Mitral valve regurgitation and 3D echocardiography. Future Cardiol 2010;6:231-242. https://doi.org/10.2217/fca.09.64
  14. Wei J, Hsiung MC, Tsai SK, et al. The routine use of live three-dimensional transesophageal echocardiography in mitral valve surgery: clinical experience. Eur J Echocardiogr 2010;11:14-18. https://doi.org/10.1093/ejechocard/jep173
  15. Tauras JM, Zhang Z, Taub CC. Incremental benefit of 3D transesophageal echocardiography: a case of a mass overlying a prosthetic mitral valve. Echocardiography 2011;28:E106-E107. https://doi.org/10.1111/j.1540-8175.2011.01383.x
  16. Siddiqi N, Seto A, Patel PM. Transcatheter closure of a mechanical perivalvular leak using real-time three-dimensional transesophageal echocardiography guidance. Catheter Cardiovasc Interv 2011;78:333-335. https://doi.org/10.1002/ccd.23162
  17. La Canna G, Arendar I, Maisano F, et al. Real-time three-dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapse-related regurgitation. Am J Cardiol 2011;107:1365-1374. https://doi.org/10.1016/j.amjcard.2010.12.048
  18. Fattouch K, Murana G, Castrovinci S, et al. Mitral valve annuloplasty and papillary muscle relocation oriented by 3-dimensional transesophageal echocardiography for severe functional mitral regurgitation. J Thorac Cardiovasc Surg 2012;143(4 Suppl):S38-S42. https://doi.org/10.1016/j.jtcvs.2012.01.010
  19. Faletra FF, Pedrazzini G, Pasotti E, Moccetti T. Side-byside comparison of fluoroscopy, 2D and 3D TEE during percutaneous edge-to-edge mitral valve repair. JACC Cardiovasc Imaging 2012;5:656-661. https://doi.org/10.1016/j.jcmg.2012.02.014
  20. Thompson KA, Shiota T, Tolstrup K, Gurudevan SV, Siegel RJ. Utility of three-dimensional transesophageal echocardiography in the diagnosis of valvular perforations. Am J Cardiol 2011;107:100-102. https://doi.org/10.1016/j.amjcard.2010.08.051
  21. Martin A, White J, Pemberton J. Severe mitral regurgitation secondary to dehiscence of a mitral annuloplasty ring shown on 3D transoesophageal echocardiography. Heart Lung Circ 2012;21:194-195. https://doi.org/10.1016/j.hlc.2011.09.006
  22. Izumo M, Shiota M, Kar S, et al. Comparison of real- time three-dimensional transesophageal echocardiography to two-dimensional transesophageal echocardiography for quantification of mitral valve prolapse in patients with severe mitral regurgitation. Am J Cardiol 2013;111:588-594. https://doi.org/10.1016/j.amjcard.2012.10.045
  23. Hoffmann R, Kaestner W, Altiok E. Closure of a paravalvular leak with real-time three-dimensional transesophageal echocardiography for accurate sizing and guiding. J Invasive Cardiol 2013;25:E210-E211.
  24. Hien MD, Rauch H, Lichtenberg A, et al. Real-time three-dimensional transesophageal echocardiography: improvements in intraoperative mitral valve imaging. Anesth Analg 2013;116:287-295. https://doi.org/10.1213/ANE.0b013e318262e154
  25. Havins J, Lick S, Boor P, Arora H, Ahmad M. Real time three-dimensional transesophageal echocardiography in partial posteromedial papillary muscle rupture. Echocardiography 2013;30:E179-E181. https://doi.org/10.1111/echo.12178
  26. Shroff H, Benenstein R, Freedberg R, Mehl S, Saric M. Mitral valve Libman-Sacks endocarditis visualized by real time three-dimensional transesophageal echocardiography. Echocardiography 2012;29:E100-E101. https://doi.org/10.1111/j.1540-8175.2011.01602.x
  27. Lee AP, Fang F, Jin CN, et al. Quantification of mitral valve morphology with three-dimensional echocardiography: can measurement lead to better management? Circ J 2014;78:1029-1037. https://doi.org/10.1253/circj.CJ-14-0373
  28. Maslow A, Mahmood F, Poppas A, Singh A. Three-dimensional echocardiographic assessment of the repaired mitral valve. J Cardiothorac Vasc Anesth 2014;28:11-17. https://doi.org/10.1053/j.jvca.2013.05.007
  29. Kutty S, Colen TM, Smallhorn JF. Three-dimensional echocardiography in the assessment of congenital mitral valve disease. J Am Soc Echocardiogr 2014;27:142-154. https://doi.org/10.1016/j.echo.2013.11.011
  30. Kocabas A, Ekici F, Cetin I, Aktas D. Three-dimensional echocardiographic evaluation of a patient with double-orifice mitral valve, bicuspid aortic valve, and coarctation of aorta. Echocardiography 2014;31:E33-E34. https://doi.org/10.1111/echo.12382
  31. Jung HJ, Yu GY, Seok JH, et al. Usefulness of intraoperative real-time three-dimensional transesophageal echocardiography for pre-procedural evaluation of mitral valve cleft: a case report. Korean J Anesthesiol 2014;66:75-79. https://doi.org/10.4097/kjae.2014.66.1.75
  32. Jain S, Malouf JF. Incremental value of 3-D transesophageal echocardiographic imaging of the mitral valve. Curr Cardiol Rep 2014;16:439. https://doi.org/10.1007/s11886-013-0439-2
  33. Faletra FF, Pedrazzini G, Pasotti E, et al. 3D TEE during catheter-based interventions. JACC Cardiovasc Imaging 2014;7:292-308.
  34. Cobey FC, Swaminathan M, Phillips-Bute B, et al. Quantitative assessment of mitral valve coaptation using three-dimensional transesophageal echocardiography. Ann Thorac Surg 2014;97:1998-2004. https://doi.org/10.1016/j.athoracsur.2014.01.015
  35. Berkowitz E, Kronzon I. Isolated accessory mitral valve: identification and anatomic description using 3D transesophageal echocardiography. Eur Heart J Cardiovasc Imaging 2014;15:596. https://doi.org/10.1093/ehjci/jet230
  36. Sordi M, Brochet E, Messika-Zeitoun D. Mitral paravalvular leak detected by three-dimensional transoesophageal echocardiography. Arch Cardiovasc Dis 2013;106:627-628. https://doi.org/10.1016/j.acvd.2012.03.008
  37. Ozkan M, Gursoy OM, Astarcioglu MA, et al. Real-time three-dimensional transesophageal echocardiography in the assessment of mechanical prosthetic mitral valve ring thrombosis. Am J Cardiol 2013;112:977-983. https://doi.org/10.1016/j.amjcard.2013.05.032
  38. Min SY, Song JM, Kim YJ, et al. Discrepancy between mitral valve areas measured by two-dimensional planimetry and three-dimensional transoesophageal echocardiography in patients with mitral stenosis. Heart 2013;99:253-258. https://doi.org/10.1136/heartjnl-2012-302742
  39. Looi JL, Lee AP, Wan S, et al. Diagnosis of cleft mitral valve using real-time 3-dimensional transesophageal echocardiography. Int J Cardiol 2013;168:1629-1630. https://doi.org/10.1016/j.ijcard.2013.01.264
  40. Shiota T, Sinclair B, Ishii M, et al. Three-dimensional reconstruction of color Doppler f low convergence regions and regurgitant jets: an in vitro quantitative study. J Am Coll Cardiol 1996;27:1511-1518. https://doi.org/10.1016/0735-1097(96)00009-5
  41. De Simone R, Glombitza G, Vahl CF, Albers J, Meinzer HP, Hagl S. Three-dimensional color Doppler: a clinical study in patients with mitral regurgitation. J Am Coll Cardiol 1999;33:1646-1654. https://doi.org/10.1016/S0735-1097(99)00041-8
  42. Li X, Shiota T, Delabays A, et al. Flow convergence flow rates from 3-dimensional reconstruction of color Doppler flow maps for computing transvalvular regurgitant flows without geometric assumptions: an in vitro quantitative flow study. J Am Soc Echocardiogr 1999;12:1035- 1044. https://doi.org/10.1016/S0894-7317(99)70099-4
  43. Sitges M, Jones M, Shiota T, et al. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: validation experimental animal study and initial clinical experience. J Am Soc Echocardiogr 2003;16:38-45. https://doi.org/10.1067/mje.2003.37
  44. Sugeng L, Spencer KT, Mor-Avi V, et al. Dynamic three-dimensional color f low Doppler: an improved technique for the assessment of mitral regurgitation. Echocardiography 2003;20:265-273. https://doi.org/10.1046/j.1540-8175.2003.03024.x
  45. Sugeng L, Lang RM. Current status of three-dimensional color flow Doppler. Cardiol Clin 2007;25:297-303. https://doi.org/10.1016/j.ccl.2007.06.006
  46. Yosefy C, Levine RA, Solis J, Vaturi M, Handschumacher MD, Hung J. Proximal f low convergence region as assessed by real-time 3-dimensional echocardiography: challenging the hemispheric assumption. J Am Soc Echocardiogr 2007;20:389-396. https://doi.org/10.1016/j.echo.2006.09.006
  47. Matsumura Y, Fukuda S, Tran H, et al. Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 2008;155:231-238. https://doi.org/10.1016/j.ahj.2007.09.002
  48. Altiok E, Hamada S, van Hall S, et al. Comparison of direct planimetry of mitral valve regurgitation orifice area by three-dimensional transesophageal echocardiography to effective regurgitant orifice area obtained by proximal flow convergence method and vena contracta area determined by color Doppler echocardiography. Am J Cardiol 2011;107:452-458. https://doi.org/10.1016/j.amjcard.2010.09.043
  49. Chikwe J, Adams DH, Su KN, et al. Can three-dimensional echocardiography accurately predict complexity of mitral valve repair? Eur J Cardiothorac Surg 2012;41:518-524. https://doi.org/10.1093/ejcts/ezr040
  50. Shiota T, Jones M, Yamada I, et al. Effective regurgitant orifice area by the color Doppler flow convergence method for evaluating the severity of chronic aortic regurgitation: an animal study. Circulation 1996;93:594-602. https://doi.org/10.1161/01.CIR.93.3.594
  51. Li XK, Irvine T, Wanitkun S, et al. Direct computation of multiple 3D f low convergence isovelocity surfaces from digital 3D reconstruction of colour Doppler data of the f low convergence region: an in vitro study with differently shaped orif ices. Eur J Echocardiogr 2000;1:244-251. https://doi.org/10.1053/euje.2000.0040
  52. Little SH, Igo SR, Pirat B, et al. In vitro validation of real-time three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am J Cardiol 2007;99:1440-1447. https://doi.org/10.1016/j.amjcard.2006.12.079
  53. Matsumura Y, Saracino G, Sugioka K, et al. Determination of regurgitant orifice area with the use of a new three-dimensional f low convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr 2008;21:1251-1256. https://doi.org/10.1016/j.echo.2008.09.004
  54. Hopmeyer J, He S, Thorvig KM, et al. Estimation of mitral regurgitation with a hemielliptic curve-fitting algorithm: in vitro experiments with native mitral valves. J Am Soc Echocardiogr 1998;11:322-331. https://doi.org/10.1016/S0894-7317(98)70099-9
  55. Kahlert P, Plicht B, Schenk IM, Janosi RA, Erbel R, Buck T. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 2008;21:912-921. https://doi.org/10.1016/j.echo.2008.02.003
  56. Yosefy C, Hung J, Chua S, et al. Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol 2009;104:978-983. https://doi.org/10.1016/j.amjcard.2009.05.043
  57. Zeng X, Levine RA, Hua L, et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging 2011;4:506-513. https://doi.org/10.1161/CIRCIMAGING.110.961649
  58. Hyodo E, Iwata S, Tugcu A, et al. Direct measurement of multiple vena contracta areas for assessing the severity of mitral regurgitation using 3D TEE. JACC Cardiovasc Imaging 2012;5:669-676. https://doi.org/10.1016/j.jcmg.2012.03.008
  59. Maragiannis D, Little SH. Quantif ication of mitral valve regurgitation: new solutions provided by 3D echocardiography. Curr Cardiol Rep 2013;15:384. https://doi.org/10.1007/s11886-013-0384-0
  60. Swaans MJ, Van den Branden BJ, Van der Heyden JA, et al. Three-dimensional transoesophageal echocardiography in a patient undergoing percutaneous mitral valve repair using the edge-to-edge clip technique. Eur J Echocardiogr 2009;10:982-983. https://doi.org/10.1093/ejechocard/jep101
  61. Altiok E, Paetsch I, Jahnke C, et al. Percutaneous edgeto- edge mitral valve repair: assessment of immediate post-procedural treatment effect using color 3-dimensional transesophageal echocardiography and cardiac magnetic resonance imaging. J Am Coll Cardiol 2011;58:e21. https://doi.org/10.1016/j.jacc.2010.11.088
  62. Wunderlich NC, Siegel RJ. Peri-interventional echo assessment for the MitraClip procedure. Eur Heart J Cardiovasc Imaging 2013;14:935-949. https://doi.org/10.1093/ehjci/jet060
  63. Schueler R, Momcilovic D, Weber M, et al. Acute changes of mitral valve geometry during interventional edgeto- edge repair with the MitraClip system are associated with midterm outcomes in patients with functional valve disease: preliminary results from a prospective single-center study. Circ Cardiovasc Interv 2014;7:390-399. https://doi.org/10.1161/CIRCINTERVENTIONS.113.001098
  64. Saitoh T, Izumo M, Furugen A, et al. Echocardiographic evaluation of iatrogenic atrial septal defect after catheter- based mitral valve clip insertion. Am J Cardiol 2012;109:1787-1791. https://doi.org/10.1016/j.amjcard.2012.02.023
  65. Anwar AM, Nosir YF, Alasnag M, Chamsi-Pasha H. Real time three-dimensional transesophageal echocardiography: a novel approach for the assessment of prosthetic heart valves. Echocardiography 2014;31:188-196. https://doi.org/10.1111/echo.12327
  66. Biner S, Kar S, Siegel RJ, Raf ique A, Shiota T. Value of color Doppler three-dimensional transesophageal echocardiography in the percutaneous closure of mitral prosthesis paravalvular leak. Am J Cardiol 2010;105:984-989. https://doi.org/10.1016/j.amjcard.2009.11.022
  67. Johri AM, Yared K, Durst R, et al. Three-dimensional echocardiography-guided repair of severe paravalvular regurgitation in a bioprosthetic and mechanical mitral valve. Eur J Echocardiogr 2009;10:572-575. https://doi.org/10.1093/ejechocard/jep019
  68. Hamilton-Craig C, Boga T, Platts D, Walters DL, Burstow DJ, Scalia G. The role of 3D transesophageal echocardiography during percutaneous closure of paravalvular mitral regurgitation. JACC Cardiovasc Imaging 2009;2:771-773. https://doi.org/10.1016/j.jcmg.2009.03.010
  69. Chen Q, Nosir YF, Vletter WB, Kint PP, Salustri A, Roelandt JR. Accurate assessment of mitral valve area in patients with mitral stenosis by three-dimensional echocardiography. J Am Soc Echocardiogr 1997;10:133-140. https://doi.org/10.1016/S0894-7317(97)70085-3
  70. Binder TM, Rosenhek R, Porenta G, Maurer G, Baumgartner H. Improved assessment of mitral valve stenosis by volumetric real-time three-dimensional echocardiography. J Am Coll Cardiol 2000;36:1355-1361. https://doi.org/10.1016/S0735-1097(00)00852-4
  71. Perez de Isla L, Benitez DR, Serra V, Cordeiro P, Zamorano JL. Usefulness of real time 3D echocardiography in assessment of rheumatic mitral stenosis. Arch Cardiol Mex 2005;75:210-221.
  72. Perez de Isla L, Casanova C, Almeria C, et al. Which method should be the reference method to evaluate the severity of rheumatic mitral stenosis? Gorlin's method versus 3D-echo. Eur J Echocardiogr 2007;8:470-473. https://doi.org/10.1016/j.euje.2006.08.008
  73. Valocik G, Kamp O, Mannaerts HF, Visser CA. New quantitative three-dimensional echocardiographic indices of mitral valve stenosis: new 3D indices of mitral stenosis. Int J Cardiovasc Imaging 2007;23:707-716. https://doi.org/10.1007/s10554-007-9211-2
  74. Chu JW, Levine RA, Chua S, et al. Assessing mitral valve area and orifice geometry in calcific mitral stenosis: a new solution by real-time three-dimensional echocardiography. J Am Soc Echocardiogr 2008;21:1006-1009. https://doi.org/10.1016/j.echo.2008.05.010
  75. Schlosshan D, Aggarwal G, Mathur G, Allan R, Cranney G. Real-time 3D transesophageal echocardiography for the evaluation of rheumatic mitral stenosis. JACC Cardiovasc Imaging 2011;4:580-588. https://doi.org/10.1016/j.jcmg.2010.12.009
  76. Weyman AE. Assessment of mitral stenosis: role of real-time 3D TEE. JACC Cardiovasc Imaging 2011;4:589-591. https://doi.org/10.1016/j.jcmg.2011.04.005
  77. Dreyfus J, Brochet E, Lepage L, et al. Real-time 3D transoesophageal measurement of the mitral valve area in patients with mitral stenosis. Eur J Echocardiogr 2011;12:750-755. https://doi.org/10.1093/ejechocard/jer118
  78. Soliman OI, Anwar AM, Metawei AK, McGhie JS, Geleijnse ML, Ten Cate FJ. New scores for the assessment of mitral stenosis using real-time three-dimensional echocardiography. Curr Cardiovasc Imaging Rep 2011;4:370-377. https://doi.org/10.1007/s12410-011-9099-z
  79. de Agustin JA, Mejia H, Viliani D, et al. Proximal flow convergence method by three-dimensional color Doppler echocardiography for mitral valve area assessment in rheumatic mitral stenosis. J Am Soc Echocardiogr 2014;27:838-845. https://doi.org/10.1016/j.echo.2014.04.023
  80. Applebaum RM, Kasliwal RR, Kanojia A, et al. Utility of three-dimensional echocardiography during balloon mitral valvuloplasty. J Am Coll Cardiol 1998;32:1405-1409. https://doi.org/10.1016/S0735-1097(98)00386-6
  81. Zamorano J, Perez de Isla L, Sugeng L, et al. Non-invasive assessment of mitral valve area during percutaneous balloon mitral valvuloplasty: role of real-time 3D echocardiography. Eur Heart J 2004;25:2086-2091. https://doi.org/10.1016/j.ehj.2004.09.041
  82. Messika-Zeitoun D, Brochet E, Holmin C, et al. Three-dimensional evaluation of the mitral valve area and commissural opening before and after percutaneous mitral commissurotomy in patients with mitral stenosis. Eur Heart J 2007;28:72-79.
  83. de Agustin JA, Nanda NC, Gill EA, de Isla LP, Zamorano JL. The use of three-dimensional echocardiography for the evaluation of and treatment of mitral stenosis. Cardiol Clin 2007;25:311-318. https://doi.org/10.1016/j.ccl.2007.06.008
  84. Shashanka C, Rajasekhar D, Vanajakshamma V, Kumar ML. Three-dimensional echocardiographic assessment before and after percutaneous transvenous mitral commissurotomy in patients with rheumatic mitral stenosis. J Heart Valve Dis 2013;22:543-549.
  85. Anwar AM, Attia WM, Nosir YF, et al. Validation of a new score for the assessment of mitral stenosis using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 2010;23:13-22. https://doi.org/10.1016/j.echo.2009.09.022
  86. Eng MH, Salcedo EE, Quaife RA, Carroll JD. Implementation of real time three-dimensional transesophageal echocardiography in percutaneous mitral balloon valvuloplasty and structural heart disease interventions. Echocardiography 2009;26:958-966. https://doi.org/10.1111/j.1540-8175.2009.00928.x
  87. Gillinov AM, Cosgrove DM 3rd, Shiota T, et al. Cosgrove- Edwards Annuloplasty System: midterm results. Ann Thorac Surg 2000;69:717-721. https://doi.org/10.1016/S0003-4975(99)01543-X
  88. Kwan J, Shiota T, Agler DA, et al. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study. Circulation 2003;107:1135-1140. https://doi.org/10.1161/01.CIR.0000053558.55471.2D
  89. Ahmad RM, Gillinov AM, McCarthy PM, et al. Annular geometry and motion in human ischemic mitral regurgitation: novel assessment with three-dimensional echocardiography and computer reconstruction. Ann Thorac Surg 2004;78:2063-2068. https://doi.org/10.1016/j.athoracsur.2004.06.016
  90. Daimon M, Shiota T, Gillinov AM, et al. Percutaneous mitral valve repair for chronic ischemic mitral regurgitation: a real-time three-dimensional echocardiographic study in an ovine model. Circulation 2005;111:2183- 2189. https://doi.org/10.1161/01.CIR.0000163547.03188.AC
  91. Watanabe N, Ogasawara Y, Yamaura Y, et al. Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J Am Coll Cardiol 2005;45:763-769. https://doi.org/10.1016/j.jacc.2004.11.048
  92. Watanabe N, Ogasawara Y, Yamaura Y, Kawamoto T, Akasaka T, Yoshida K. Geometric deformity of the mitral annulus in patients with ischemic mitral regurgitation: a real-time three-dimensional echocardiographic study. J Heart Valve Dis 2005;14:447-452.
  93. Anwar AM, Soliman O, van den Bosch AE, et al. Assessment of pulmonary valve and right ventricular outflow tract with real-time three-dimensional echocardiography. Int J Cardiovasc Imaging 2007;23:167-175. https://doi.org/10.1007/s10554-006-9142-3
  94. Daimon M, Saracino G, Gillinov AM, et al. Local dysfunction and asymmetrical deformation of mitral annular geometry in ischemic mitral regurgitation: a novel computerized 3D echocardiographic analysis. Echocardiography 2008;25:414-423. https://doi.org/10.1111/j.1540-8175.2007.00600.x
  95. Lin QS, Fang F, Yu CM, et al. Dynamic assessment of the changing geometry of the mitral apparatus in 3D could stratify abnormalities in functional mitral regurgitation and potentially guide therapy. Int J Cardiol 2014 Aug 8 [Epub]. http://dx.doi.org/10.1016/j.ijcard. 2014.08.001.
  96. Kwan J, Jeon MJ, Kim DH, Park KS, Lee WH. Does the mitral annulus shrink or enlarge during systole? A real- time 3D echocardiography study. J Korean Med Sci 2009;24:203-208.
  97. Moustafa SE, Mookadam F, Alharthi M, Kansal M, Bansal RC, Chandrasekaran K. Mitral annular geometry in normal and myxomatous mitral valves: three-dimensional transesophageal echocardiographic quantification. J Heart Valve Dis 2012;21:299-310.
  98. Mahmood F, Warraich HJ, Gorman JH 3rd, et al. Changes in mitral annular geometry after aortic valve replacement: a three-dimensional transesophageal echocardiographic study. J Heart Valve Dis 2012;21:696-701.
  99. Yamaura Y, Yoshikawa J, Yoshida K, Hozumi T, Akasaka T, Okada Y. Three-dimensional analysis of conf iguration and dynamics in patients with an annuloplasty ring by multiplane transesophageal echocardiography: comparison between f lexible and rigid annuloplasty rings. J Heart Valve Dis 1995;4:618-622.
  100. Yamaura Y, Yoshida K, Hozumi T, Akasaka T, Okada Y, Yoshikawa J. Three-dimensional echocardiographic evaluation of configuration and dynamics of the mitral annulus in patients fitted with an annuloplasty ring. J Heart Valve Dis 1997;6:43-47.
  101. Anwar AM, Soliman OI, Nemes A, van Geuns RJ, Geleijnse ML, Ten Cate FJ. Value of assessment of tricuspid annulus: real-time three-dimensional echocardiography and magnetic resonance imaging. Int J Cardiovasc Imaging 2007;23:701-705. https://doi.org/10.1007/s10554-006-9206-4
  102. Kwan J, Kim GC, Jeon MJ, et al. 3D geometry of a normal tricuspid annulus during systole: a comparison study with the mitral annulus using real-time 3D echocardiography. Eur J Echocardiogr 2007;8:375-383. https://doi.org/10.1016/j.euje.2006.07.010
  103. Kwan J, Gillinov MA, Thomas JD, Shiota T. Geometric predictor of significant mitral regurgitation in patients with severe ischemic cardiomyopathy, undergoing Dor procedure: a real-time 3D echocardiographic study. Eur J Echocardiogr 2007;8:195-203. https://doi.org/10.1016/j.euje.2006.03.002
  104. Vengala S, Nanda NC, Dod HS, et al. Images in geriatric cardiology: usefulness of live three-dimensional transthoracic echocardiography in aortic valve stenosis evaluation. Am J Geriatr Cardiol 2004;13:279-284. https://doi.org/10.1111/j.1076-7460.2004.02710.x
  105. Fang L, Hsiung MC, Miller AP, et al. Assessment of aortic regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area: usefulness and validation. Echocardiography 2005;22:775-781. https://doi.org/10.1111/j.1540-8175.2005.00171.x
  106. Goland S, Trento A, Iida K, et al. Assessment of aortic stenosis by three-dimensional echocardiography: an accurate and novel approach. Heart 2007;93:801-807. https://doi.org/10.1136/hrt.2006.110726
  107. Poh KK, Levine RA, Solis J, et al. Assessing aortic valve area in aortic stenosis by continuity equation: a novel approach using real-time three-dimensional echocardiography. Eur Heart J 2008;29:2526-2535. https://doi.org/10.1093/eurheartj/ehn022
  108. Gripari P, Ewe SH, Fusini L, et al. Intraoperative 2D and 3D transoesophageal echocardiographic predictors of aortic regurgitation after transcatheter aortic valve implantation. Heart 2012;98:1229-1236. https://doi.org/10.1136/heartjnl-2012-301998
  109. Jilaihawi H, Doctor N, Kashif M, et al. Aortic annular sizing for transcatheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. J Am Coll Cardiol 2013;61:908-916. https://doi.org/10.1016/j.jacc.2012.11.055
  110. Perez de Isla L, Zamorano J, Fernandez-Golfin C, et al. 3D color-Doppler echocardiography and chronic aortic regurgitation: a novel approach for severity assessment. Int J Cardiol 2013;166:640-645. https://doi.org/10.1016/j.ijcard.2011.11.094
  111. Shibayama K, Watanabe H, Sasaki S, et al. Impact of regurgitant orifice height for mechanism of aortic regurgitation. JACC Cardiovasc Imaging 2013;6:1347-1349. https://doi.org/10.1016/j.jcmg.2013.03.011
  112. Ewe SH, Delgado V, van der Geest R, et al. Accuracy of three-dimensional versus two-dimensional echocardiography for quantif ication of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am J Cardiol 2013;112:560-566. https://doi.org/10.1016/j.amjcard.2013.04.025
  113. Furukawa A, Abe Y, Tanaka C, et al. Comparison of two-dimensional and real-time three-dimensional transesophageal echocardiography in the assessment of aortic valve area. J Cardiol 2012;59:337-343. https://doi.org/10.1016/j.jjcc.2012.01.011
  114. Saitoh T, Shiota M, Izumo M, et al. Comparison of left ventricular outf low geometry and aortic valve area in patients with aortic stenosis by 2-dimensional versus 3-dimensional echocardiography. Am J Cardiol 2012;109:1626-1631. https://doi.org/10.1016/j.amjcard.2012.01.391
  115. Altiok E, Koos R, Schroder J, et al. Comparison of two-dimensional and three-dimensional imaging techniques for measurement of aortic annulus diameters before transcatheter aortic valve implantation. Heart 2011;97:1578-1584. https://doi.org/10.1136/hrt.2011.223974
  116. Wu VC, Kaku K, Takeuchi M, et al. Aortic root geometry in patients with aortic stenosis assessed by real-time three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr 2014;27:32-41. https://doi.org/10.1016/j.echo.2013.10.007
  117. Garcia E, Almeria C, Unzue L, Jimenez P, Cuadrado A, Macaya C. Transfemoral implantation of Edwards Sapien XT aortic valve without previous valvuloplasty: role of 2D/3D transeophageal echocardiography. Catheter Cardiovasc Interv 2014 Jan 31 [Epub]. http://dx.doi.org/10.1002/ccd.25417.
  118. Bharucha T, Ho SY, Vettukattil JJ. Multiplanar review analysis of three-dimensional echocardiographic datasets gives new insights into the morphology of subaortic stenosis. Eur J Echocardiogr 2008;9:614-620. https://doi.org/10.1093/ejechocard/jen008
  119. Mihara H, Shibayama K, Harada K, Berdejo J, Itabashi Y, Shiota T. LV outflow tract area in discrete subaortic stenosis and hypertrophic obstructive cardiomyopathy: a real-time 3-dimensional transesophageal echocardiography study. JACC Cardiovasc Imaging 2014;7:425-428. https://doi.org/10.1016/j.jcmg.2014.01.010
  120. Patel V, Nanda NC, Rajdev S, et al. Live/real time three-dimensional transthoracic echocardiographic assessment of Ebstein's anomaly. Echocardiography 2005;22:847-854. https://doi.org/10.1111/j.1540-8175.2005.00173.x
  121. van Noord PT, Scohy TV, McGhie J, Bogers AJ. Three-dimensional transesophageal echocardiography in Ebstein's anomaly. Interact Cardiovasc Thorac Surg 2010;10:836-837. https://doi.org/10.1510/icvts.2009.229476
  122. Negoi RI, Ispas AT, Ghiorghiu I, et al. Complex Ebstein's malformation: def ining preoperative cardiac anatomy and function. J Card Surg 2013;28:70-81. https://doi.org/10.1111/jocs.12032
  123. Bhattacharyya S, Burke M, Caplin ME, Davar J. Utility of 3D transoesophageal echocardiography for the assessment of tricuspid and pulmonary valves in carcinoid heart disease. Eur J Echocardiogr 2011;12:E4. https://doi.org/10.1093/ejechocard/jeq099
  124. Bhattacharyya S, Toumpanakis C, Burke M, Taylor AM, Caplin ME, Davar J. Features of carcinoid heart disease identified by 2- and 3-dimensional echocardiography and cardiac MRI. Circ Cardiovasc Imaging 2010;3:103-111. https://doi.org/10.1161/CIRCIMAGING.109.886846
  125. Dumaswala B, Bicer EI, Dumaswala K, et al. Live/real time three-dimensional transthoracic echocardiographic assessment of the involvement of cardiac valves and chambers in carcinoid disease. Echocardiography 2012;29:E72-E77. https://doi.org/10.1111/j.1540-8175.2011.01662.x
  126. Fazlinezhad A, Moravvej Z, Azari A, Bigdelu L. Carcinoid heart disease and the utility of 3D trans-thoracic and trans-esophageal echocardiography: two clinical cases. J Saudi Heart Assoc 2014;26:51-55. https://doi.org/10.1016/j.jsha.2013.08.004
  127. Addetia K, Maffessanti F, Mediratta A, et al. Impact of implantable transvenous device lead location on severity of tricuspid regurgitation. J Am Soc Echocardiogr 2014 Aug 14 [Epub]. http://dx.doi.org/10.1016/j.echo.2014.07.004.
  128. Klein AL, Jellis CL. 3D imaging of device leads: "taking the lead with 3D". JACC Cardiovasc Imaging 2014;7:348-350. https://doi.org/10.1016/j.jcmg.2013.12.006
  129. Mediratta A, Addetia K, Yamat M, et al. 3D echocardiographic location of implantable device leads and mechanism of associated tricuspid regurgitation. JACC Cardiovasc Imaging 2014;7:337-347.
  130. Fukuda S, Saracino G, Matsumura Y, et al. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation 2006;114(1 Suppl):I492-I498. https://doi.org/10.1161/CIRCULATIONAHA.106.630764
  131. Park YH, Song JM, Lee EY, Kim YJ, Kang DH, Song JK. Geometric and hemodynamic determinants of functional tricuspid regurgitation: a real-time three-dimensional echocardiography study. Int J Cardiol 2008;124:160-165. https://doi.org/10.1016/j.ijcard.2006.12.036
  132. Anwar AM, Geleijnse ML, Ten Cate FJ, Meijboom FJ. Assessment of tricuspid valve annulus size, shape and function using real-time three-dimensional echocardiography. Interact Cardiovasc Thorac Surg 2006;5:683-687. https://doi.org/10.1510/icvts.2006.132381
  133. Mahmood F, Kim H, Chaudary B, et al. Tricuspid annular geometry: a three-dimensional transesophageal echocardiographic study. J Cardiothorac Vasc Anesth 2013;27:639-646. https://doi.org/10.1053/j.jvca.2012.12.014
  134. Daimon M, Gillinov AM, Liddicoat JR, et al. Dynamic change in mitral annular area and motion during percutaneous mitral annuloplasty for ischemic mitral regurgitation: preliminary animal study with real-time 3-dimensional echocardiography. J Am Soc Echocardiogr 2007;20:381-388. https://doi.org/10.1016/j.echo.2006.08.029
  135. Fukuda S, Gillinov AM, McCarthy PM, Matsumura Y, Thomas JD, Shiota T. Echocardiographic follow-up of tricuspid annuloplasty with a new three-dimensional ring in patients with functional tricuspid regurgitation. J Am Soc Echocardiogr 2007;20:1236-1242. https://doi.org/10.1016/j.echo.2007.03.006
  136. Naqvi TZ, Rafie R, Ghalichi M. Real-time 3D TEE for the diagnosis of right-sided endocarditis in patients with prosthetic devices. JACC Cardiovasc Imaging 2010;3:325-327. https://doi.org/10.1016/j.jcmg.2009.11.011
  137. Tanis W, Teske AJ, van Herwerden LA, et al. The additional value of three-dimensional transesophageal echocardiography in complex aortic prosthetic heart valve endocarditis. Echocardiography 2014 Apr 12 [Epub]. http://dx.doi.org/10.1111/echo.12602.
  138. Berdejo J, Shibayama K, Harada K, et al. Evaluation of vegetation size and its relationship with embolism in infective endocarditis: a real-time 3-dimensional transesophageal echocardiography study. Circ Cardiovasc Imaging 2014;7:149-154. https://doi.org/10.1161/CIRCIMAGING.113.000938

Cited by

  1. Three-dimensional echocardiography in adult congenital heart disease vol.32, pp.4, 2014, https://doi.org/10.3904/kjim.2016.251
  2. Echocardiographic evaluation of heart valve prosthetic dysfunction vol.2, pp.1, 2014, https://doi.org/10.24969/hvt.2017.46
  3. Surgical Echocardiography of the MV: Focus on 3D vol.23, pp.1, 2014, https://doi.org/10.1177/1089253218789409
  4. Role of 3-Dimensional Echocardiography in the Comprehensive Evaluation of the Tricuspid Valve in Patients With Tricuspid Regurgitation vol.2, pp.1, 2014, https://doi.org/10.1253/circrep.cr-19-0108
  5. Cardioembolic stroke: classification of causes and prevention strategies vol.13, pp.6, 2014, https://doi.org/10.14412/2074-2711-2021-6-4-13