DOI QR코드

DOI QR Code

Multilayered phospholipid polymer hydrogels for releasing cell growth factors

  • Choi, Jiyeon (Department of Materials Engineering, The University of Tokyo) ;
  • Konno, Tomohiro (Department of Bioengineering, The University of Tokyo) ;
  • Ishihara, Kazuhiko (Department of Materials Engineering, The University of Tokyo)
  • Received : 2013.10.10
  • Accepted : 2014.02.05
  • Published : 2014.03.25

Abstract

Polymer multilayered hydrogels were prepared on a titanium alloy (Ti) substrate using a layer-by-layer (LBL) process to load a cell growth factor. Two water-soluble polymers were used to fabricate the multilayered hydrogels, a phospholipid polymer with both N, N-dimethylaminoethyl methacrylate (DMAEMA) units and 4-vinylphenylboronic acid (VPBA) units [poly(MPC-co-DMAEMA-co-VPBA) (PMDV)], and the polysaccharide alginate (ALG). PMDV interacted with ALG through a selective reaction between the VPBA units in PMDV and the hydroxyl groups in ALG and through electrostatic interactions between the DMAEMA units in PMDA and the anionic carboxyl groups in ALG. First, the Ti substrate was covered with photoreactive poly vinyl alcohol, and then the Ti alloy was alternately immersed in the respective polymer solutions to form the PMDV/ALG multilayered hydrogels. In this multilayered hydrogel, vascular endothelial growth factor (VEGF) was introduced in different layers during the LbL process under mild conditions. Release of VEGF from the multilayered hydrogels was dependent on the location; however, release continued for 2 weeks. Endothelial cells adhered to the hydrogel and proliferated, and these corresponded to the VEGF release profile from the hydrogel. We concluded that multilayered hydrogels composed of PMDV and ALG could be loaded with cell growth factors that have high activity and can control cell functions. Therefore, this system provides a cell function controllable substrate based on the controlled release of biologically active proteins.

Keywords

References

  1. Aikawa, T., Konno, T. and Ishihara, K. (2012), "Continuous preparation of a spherical phospholipid polymer hydrogel for cell encapsulation using a flow-focusing microfluidic channel device", Langmuir, 28(4), 2145-2150. https://doi.org/10.1021/la2037586
  2. Aikawa, T., Konno, T. and Ishihara, K. (2013), "Phospholipid polymer hydrogel microsphere modulates the cell cycle profile of encapsulated cells", Soft Matter., 9, 4628-4634. https://doi.org/10.1039/c3sm50394a
  3. Augst, A.D., Kong, H.J. and Mooney, D.J. (2006), "Alginate hydrogels as biomaterials", Macromol. Biosci., 6(8), 623-633. https://doi.org/10.1002/mabi.200600069
  4. Choi, J., Konno, T., Matsuno, R., Takai, M. and Ishihara, K. (2008), "Surface immobilization of biocompatible phospholipid polymer multilayered hydrogel on titanium alloy", Colloids Surf. B: Biointerfaces, 67(2), 216-223. https://doi.org/10.1016/j.colsurfb.2008.08.025
  5. Choi, J., Konno, T., Takai, M. and Ishihara, K. (2009), "Controlled drug release from multilayered phospholipid polymer hydrogel on titanium alloy surface", Biomaterials, 30(28), 5201-5208. https://doi.org/10.1016/j.biomaterials.2009.06.003
  6. Cleland, J.L., Duenas, E.T., Park, A., Daugherty, A., Kahn, J., Kowalski, J. and Cuthbertson, A. (2001), "Development of poly-(D, L-lactide-co-glycotide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis", J. Control. Release, 72(1-3), 13-24. https://doi.org/10.1016/S0168-3659(01)00258-9
  7. Decher, G., Hong, J.D. and Shimit, J. (1992), "Buildup of ultrathin multilayered films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces", Thin Solid Films, 210(part2), 831-835.
  8. Gu, F., Amsden, B. and Neufeld, R. (2004), "Sustained delivery of vascular endothelial growth factor with alginate beads", J. Control. Release, 96(3), 463-472. https://doi.org/10.1016/j.jconrel.2004.02.021
  9. Ishihara, K., Ueda, T. and Nakabayashi, N. (1990a), "Preparation of phospholipid polymers and their properties as polymer hydrogel membrane", Polym. J., 22, 355-360. https://doi.org/10.1295/polymj.22.355
  10. Ishihara, K., Aragaki, R., Ueda, T., Watanabe, A. and Nakabayashi, N. (1990(b)), "Reduced thrombogenicity of polymers having phospholipid polar groups", J. Biomed. Mater. Res., 24(8), 1069-1077. https://doi.org/10.1002/jbm.820240809
  11. Ishihara, K., Ziats, N.P., Tierney, B.P., Nakabayashi, N. and Anderson, J.M. (1991), "Protein adsorption from human plasma is reduced on phospholipid polymers", J. Biomed. Mater. Res., 25(11), 1397-407. https://doi.org/10.1002/jbm.820251107
  12. Ishihara, K., Oshida, H., Endo, Y., Ueda, T., Watanabe, A. and Nakabayashi, N. (1992) "Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism", J. Biomed. Mater. Res., 26(12), 1543-1552. https://doi.org/10.1002/jbm.820261202
  13. Ishihara, K., Nomura, H., Mihara, T., Kurita, K., Iwasaki, Y. and Nakabayashi, N. (1998), "Why do phospholipid polymers reduce protein adsorption?", J. Biomed. Mater. Res., 39(2), 323-330. https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C
  14. Itoh, Y., Matsusaki, M., Kida, T. and Akashi, M. (2008), "Locally controlled release of basic fibroblast growth factor from multilayered capsules", Biomacromolecules, 9, 2202-2206. https://doi.org/10.1021/bm800321w
  15. Kimura, M., Fukumoto, K., Watanabe, J., Takai, M. and Ishihara, K. (2005), "Spontaneously forming hydrogel from water-soluble random-and block-type phospholipid polymers", Biomaterials, 26(34), 6853-6862. https://doi.org/10.1016/j.biomaterials.2005.05.018
  16. Kiritoshi, Y. and Ishihara, K. (2004), "Synthesis of hydrophilic cross-linker having phosphorylcholine-like linkage for improvement of hydrogel properties", Polymer, 45(22), 7499-7504. https://doi.org/10.1016/j.polymer.2004.09.014
  17. Konno, T. and Ishihara, K. (2007), "Temporal and spatially controllable cell encapsulation using a water-soluble phospholipid polymer with phenylboronic acid moiety", Biomaterials, 28(10), 1770-1777. https://doi.org/10.1016/j.biomaterials.2006.12.017
  18. Lewis, A.L. (2000), "Phosphorylcholine-based polymers and their use in the prevention of biofouling", Colloids Surf. B: Biointerfaces, 18, 261-275. https://doi.org/10.1016/S0927-7765(99)00152-6
  19. Lewis, A.L., Cumming, Z.L., Goreish, H.H., Kirkwood, L.C., Tolhurst, L.A. and Stratford, P.W. (2001), "Crosslinkable coating from phosphorylcholine-based polymers", Biomaterials, 22(2), 99-111. https://doi.org/10.1016/S0142-9612(00)00083-1
  20. Li, Y.T., Tang, Y.Q., Narain, R., Lewis, A.L. and Armes, S.P. (2005), "Biomimetic stimulus-responseive star diblock gelators", Langmuir, 21(22), 9946-9954. https://doi.org/10.1021/la050356u
  21. Lorand, J.P. and Edwards, J.O. (1959), "Polyol complexes and structure of the benzeneboronate ion", J. Org. Chem., 24(6), 769-774. https://doi.org/10.1021/jo01088a011
  22. Matsusaki, M., Sakaguchi, H., Serizawa, T. and Akashi, M. (2007), "Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayered films", J. Biomater. Sci. Polym. Edn., 18(6), 775-783. https://doi.org/10.1163/156856207781034160
  23. Miralem, T., Steinberg, R., Price, D. and Avraham, H. (2001), "VEGF(165) requires extracellular matrix components to induce mitogenic effects and migratory response in breast cancer cells", Oncogene, 20(39), 5511-5524. https://doi.org/10.1038/sj.onc.1204753
  24. Morisaku, T., Watanabe, J., Konno, T., Takai, M. and Ishihara, K. (2008), "Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis", Polymer, 49(21), 4652-4657. https://doi.org/10.1016/j.polymer.2008.08.025
  25. Nam, K.W., Watanabe, J. and Ishihara, K. (2002), "Characterization of the spontaneously forming hydrogels composed of water-soluble phospholipid polymers", Biomacromolecules, 3(1), 100-105. https://doi.org/10.1021/bm015589o
  26. Oda, H., Konno, T. and Ishihara, K. (2013), "The use of the mechanical microenvironment of phospholipid polymer hydrogels to control cell behavior", Biomaterials, 34(24), 5891-5896. https://doi.org/10.1016/j.biomaterials.2013.04.015
  27. Patel, Z.S. and Mikos, A. (2004), "Angiogenesis with biomaterial-based drug- and cell-delivery systems", J. Biomater. Sci. Polym. Edn., 15(6), 701-726. https://doi.org/10.1163/156856204774196117
  28. Rowley, J.A. and Mooney, D.J. (2002), "Alginate type and RGD density control myoblast phenotype", J. Biomed. Mater. Res., 60(2), 217-223. https://doi.org/10.1002/jbm.1287
  29. Saito, A., Konno, T., Ikake, H., Kurita, K. and Ishihara, K. (2010), "Cell functional control on surface of phospholipid polymer having phenylboronic acid moiety", Biomed. Mater., 5, 054101/1-7. https://doi.org/10.1088/1748-6041/5/5/054101
  30. Sammon, C., Li, C., Armes, S.P. and Lewis, A.L. (2006), "ATR-FTIR studies of a thermo-responsive ABA triblock copolymer gelator in aqueous solution", Polymer, 47, 6123-6130. https://doi.org/10.1016/j.polymer.2006.06.013
  31. Sawada, S., Iwasaki, Y., Nakabayashi, N. and Ishihara, K. (2006), "Stress response of adherent cells on a polymer blend surface composed of a segmented polyurethane and MPC copolymers", J. Biomed. Mater. Res., 79A(3), 476-484. https://doi.org/10.1002/jbm.a.30820
  32. Tang, Z., Wang, Y., Podsiadlo, P. and Kotov, N.A. (2006), "Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering", Adv. Mater., 18(24), 3203-3224. https://doi.org/10.1002/adma.200600113
  33. Ueda, T., Oshida, H., Kurita, K., Ishihara, K. and Nakabayashi, N. (1992), "Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility", Polym. J., 24, 1259-1269. https://doi.org/10.1295/polymj.24.1259
  34. Van den Beucken, J.J., Walboomers, X.F., Boerman, O.C., Vos, M.R., Sommerdijk, N.A., Hayakawa, T., Fukushima, T., Okahata, Y., Nolte, R.J. and Jansen, J.A. (2006), "Functionalization of multilayered DNA-coatings with bone morphogenetic protein 2", J. Control. Release, 113(1), 63-72. https://doi.org/10.1016/j.jconrel.2006.03.016
  35. Xu, Y., Sato, K., Mawatari, K., Konno, T., Jang, K., Ishihara, K. and Kitamori, T. (2010), "A microfluidic hydrogel capable of cell preservation without perfusion culture under cell-based assay conditions", Adv. Mater., 22(28), 3017-3021. https://doi.org/10.1002/adma.201000006
  36. Xu, Y., Jang, K., Konno, T., Ishihara, K., Mawatari, K. and Kitamori, T. (2010), "The biological performance of cell-containing phospholipid polymer hydrogels in bulk and microscale form", Biomaterials, 31(34), 8839-8846. https://doi.org/10.1016/j.biomaterials.2010.07.106
  37. Yamauchi, F., Koyamatsu, Y., Kato, K. and Iwata, H. (2006), "Layer-by-layer assembly of cationic lipid and plasmid DNA onto gold surface for stent-assisted gene transfer", Biomaterials, 27(18), 3497-3504. https://doi.org/10.1016/j.biomaterials.2006.02.004

Cited by

  1. Phospholipid polymer can reduce cytotoxicity of poly (lactic acid) nanoparticles in a high-content screening assay vol.1, pp.2, 2014, https://doi.org/10.12989/bme.2014.1.2.095
  2. Bioinspired Phospholipid Polymer Hydrogel System for Cellular Engineering vol.351, pp.1, 2015, https://doi.org/10.1002/masy.201300118
  3. Fabrication of a live cell-containing multilayered polymer hydrogel membrane with micrometer-scale thickness to evaluate pharmaceutical activity vol.26, pp.18, 2015, https://doi.org/10.1080/09205063.2015.1095025