DOI QR코드

DOI QR Code

Cytotoxicity of newly developed pozzolan cement and other root-end filling materials on human periodontal ligament cell

  • Song, Minju (Department of Conservative Dentistry Gangnam Severance Dental Hospital) ;
  • Yoon, Tae-Sun (Department of Conservative Dentistry, Yonsei University College of Dentistry) ;
  • Kim, Sue-Youn (Department of Conservative Dentistry, Yonsei University College of Dentistry) ;
  • Kim, Euiseong (Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry)
  • Received : 2013.12.02
  • Accepted : 2013.12.26
  • Published : 2014.02.28

Abstract

Objectives: The purpose of this study was to evaluate in vitro cytotoxicity of the pozzolan cement and other root-end filling materials using human periodontal ligament cell. Materials and Methods: Endocem (Maruchi), white ProRoot MTA (Dentsply), white Angelus MTA (Angelus), and Super EBA (Bosworth Co.) were tested after set completely in an incubator at $37^{\circ}C$ for 7 days, Endocem was tested in two ways: 1) immediately after mixing (fresh specimens) and 2) after setting completely like other experimental materials. The methods for assessment included light microscopic examination, cell counting and WST-1 assay on human periodontal ligament cell. Results: In the results of microscopic examination and cell counting, Super EBA showed significantly lower viable cell than any other groups (p < 0.05). As the results of WST-1 assay, compared with untreated control group, there was no significant cell viability of the Endocem group. However, the fresh mixed Endocem group had significantly less cell viability. The cells exposed to ProRoot MTA and Angelus MTA showed the highest viability, whereas the cells exposed to Super EBA displayed the lowest viability (p < 0.05). Conclusions: The cytotoxicity of the pozzolan cement (Endocem) was comparable with ProRoot MTA and Angelus MTA. Considering the difficult manipulation and long setting time of ProRoot MTA and Angelus MTA, Endocem can be used as the alternative of retrofilling material.

Keywords

References

  1. Torabinejad M, Hong CU, Pitt Ford TR, Kaiyawasam SP. Tissue reaction to implanted super-EBA and mineral trioxide aggregate in the mandible of guinea pigs: a preliminary report. J Endod 1995;21:569-571. https://doi.org/10.1016/S0099-2399(06)80987-8
  2. Al-Saeed OR, Al-Hiyasat AS, Darmani H. The effects of six root-end filling materials and their leachable components on cell viability. J Endod 2008;34:1410-1414. https://doi.org/10.1016/j.joen.2008.08.001
  3. Bondra DL, Hartwell GR, MacPherson MG, Portell FR. Leakage in vitro with IRM, high copper amalgam, and EBA cement as retrofilling materials. J Endod 1989; 15:157-160. https://doi.org/10.1016/S0099-2399(89)80253-5
  4. Samara A, Sarri Y, Stravopodis D, Tzanetakis GN, Kontakiotis EG, Anastasiadou E. A comparative study of the effects of three root-end filling materials on proliferation and adherence of human periodontal ligament fibroblasts. J Endod 2011;37:865-870. https://doi.org/10.1016/j.joen.2011.03.011
  5. Bodrumlu E. Biocompatibility of retrograde root filling materials: a review. Aust Endod J 2008;34:30-35. https://doi.org/10.1111/j.1747-4477.2007.00085.x
  6. Asgary S, Eghbal MJ, Parirokh M, Ghoddusi J, Kheirieh S, Brink F. Comparison of mineral trioxide aggregate's composition with Portland cements and a new endodontic cement. J Endod 2009;35:243-250. https://doi.org/10.1016/j.joen.2008.10.026
  7. Dorn SO, Gartner AH. Retrograde filling materials: A retrospective success-failure study of amalgam, EBA, and IRM. J Endod 1990;16:391-393. https://doi.org/10.1016/S0099-2399(06)81912-6
  8. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod 1995;21:349-353. https://doi.org/10.1016/S0099-2399(06)80967-2
  9. Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR. Investigation of mineral trioxide aggregate for rootend filling in dogs. J Endod 1995;21:603-608. https://doi.org/10.1016/S0099-2399(06)81112-X
  10. Rubinstein RA, Kim S. Long-term follow-up of cases considered healed one year after apical microsurgery. J Endod 2002;28:378-383. https://doi.org/10.1097/00004770-200205000-00008
  11. Taschieri S, Del Fabbro M, Testori T, Weinstein R. Endoscopic periradicular surgery: a prospective clinical study. Br J Oral Maxillofac Surg 2007;45:242-244. https://doi.org/10.1016/j.bjoms.2005.09.007
  12. Enkel B, Dupas C, Armengol V, Akpe Adou J, Bosco J, Daculsi G, Jean A, Laboux O, LeGeros RZ, Weiss P. Bioactive materials in endodontics. Expert Rev Med Devices 2008;5:475-494. https://doi.org/10.1586/17434440.5.4.475
  13. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-Part I: chemical, physical, and antibacterial properties. J Endod 2010;36: 16-27. https://doi.org/10.1016/j.joen.2009.09.006
  14. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010;36:400-413. https://doi.org/10.1016/j.joen.2009.09.009
  15. Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review-part II: leakage and biocompatibility investigations. J Endod 2010;36:190-202. https://doi.org/10.1016/j.joen.2009.09.010
  16. Song M, Kim SG, Shin SJ, Kim HC, Kim E. The influence of bone tissue deficiency on the outcome of endodontic microsurgery: a prospective study. J Endod 2013;39:1341-1345. https://doi.org/10.1016/j.joen.2013.06.036
  17. Karimjee CK, Koka S, Rallis DM, Gound TG. Cellular toxicity of mineral trioxide aggregate mixed with an alternative delivery vehicle. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:e115-120. https://doi.org/10.1016/j.tripleo.2005.12.020
  18. Huang FM, Chang YC. Cytotoxicity of resin-based restorative materials on human pulp cell cultures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002; 94:361-365. https://doi.org/10.1067/moe.2002.126341
  19. Geurtsen W, Lehmann F, Spahl W, Leyhausen G. Cytotoxicity of 35 dental resin composite monomers/ additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 1998;41:474-480. https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<474::AID-JBM18>3.0.CO;2-I
  20. Perez AL, Spears R, Gutmann JL, Opperman LA. Osteoblasts and MG-63 osteosarcoma cells behave differently when in contact with ProRoot MTA and White MTA. Int Endod J 2003;36:564-570. https://doi.org/10.1046/j.1365-2591.2003.00691.x
  21. Abdullah D, Ford TR, Papaioannou S, Nicholson J, McDonald F. An evaluation of accelerated Portland cement as a restorative material. Biomaterials 2002;23: 4001-4010. https://doi.org/10.1016/S0142-9612(02)00147-3
  22. Balto HA. Attachment and morphological behavior of human periodontal ligament fibroblasts to mineral trioxide aggregate: a scanning electron microscope study. J Endod 2004;30:25-29. https://doi.org/10.1097/00004770-200401000-00005
  23. Zhu Q, Haglund R, Safavi KE, Spangberg LS. Adhesion of human osteoblasts on root-end filling materials. J Endod 2000;26:404-406. https://doi.org/10.1097/00004770-200007000-00006
  24. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 1996;19:1518-1520. https://doi.org/10.1248/bpb.19.1518
  25. Ishiyama M, Shiga M, Sasamoto K, Mizoguchi M, He PG. A new sulfonated tetrazolium salt that produces a highly water-soluble formazan dye. Chem Pharm Bull 1993;41:1118-1122. https://doi.org/10.1248/cpb.41.1118
  26. De Deus G, Ximenes R, Gurgel-Filho ED, Plotkowski MC, Coutinho-Filho T. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int Endod J 2005;38:604-609. https://doi.org/10.1111/j.1365-2591.2005.00987.x
  27. Saidon J, He J, Zhu Q, Safavi K, Spangberg LS. Cell and tissue reactions to mineral trioxide aggregate and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:483-489. https://doi.org/10.1067/moe.2003.20
  28. Shin SJ. In vitro studies addressing celluar mechanisms underlying the bone and dentin inductive property of mineral trioxide aggregate (MTA). Master thesis in oral Biology. University of Pennsylvania; 2004. p75.
  29. Lin CP, Chen YJ, Lee YL, Wang JS, Chang MC, Lan WH, Chang HH, Chao WM, Tai TF, Lee MY, Lin BR, Jeng JH. Effects of root-end filling materials and eugenol on mitochondrial dehydrogenase activity and cytotoxicity to human periodontal ligament fibroblasts. J Biomed Mater Res B Appl Biomater 2004;71:429-440.
  30. Bonson S, Jeansonne BG, Lallier TE. Root-end filling materials alter fibroblast differentiation. J Dent Res 2004;83:408-413. https://doi.org/10.1177/154405910408300511
  31. Moghaddame-Jafari S, Mantellini MG, Botero TM, McDonald NJ, Nor JE. Effect of ProRoot MTA on pulp cell apoptosis and proliferation in vitro. J Endod 2005;31: 387-391. https://doi.org/10.1097/01.don.0000145423.89539.d7

Cited by

  1. Comparative Analysis of Selected Physicochemical Properties of Pozzolan Portland and MTA-Based Cements vol.2014, pp.2356-7872, 2014, https://doi.org/10.1155/2014/831908
  2. Surgical endodontics: past, present, and future vol.30, pp.1, 2014, https://doi.org/10.1111/etp.12058
  3. Dynamic intratubular biomineralization following root canal obturation with pozzolan-based mineral trioxide aggregate sealer cement vol.38, pp.1, 2016, https://doi.org/10.1002/sca.21240
  4. Effects of two fast-setting calcium-silicate cements on cell viability and angiogenic factor release in human pulp-derived cells vol.104, pp.2, 2016, https://doi.org/10.1007/s10266-015-0194-5
  5. In Vitro Cytotoxicity Evaluation of Three Root-End Filling Materials in Human Periodontal Ligament Fibroblasts vol.27, pp.2, 2016, https://doi.org/10.1590/0103-6440201600447
  6. Biological efficacy of two mineral trioxide aggregate (MTA)-based materials in a canine model of pulpotomy vol.36, pp.1, 2017, https://doi.org/10.4012/dmj.2016-121
  7. Comparative analysis of physicochemical properties of root perforation sealer materials vol.39, pp.3, 2014, https://doi.org/10.5395/rde.2014.39.3.201
  8. Biological response of commercially available different tricalcium silicate-based cements and pozzolan cement vol.80, pp.9, 2017, https://doi.org/10.1002/jemt.22891
  9. study vol.51, pp.7, 2018, https://doi.org/10.1111/iej.12889
  10. Effects of Three Calcium Silicate Cements on Inflammatory Response and Mineralization-Inducing Potentials in a Dog Pulpotomy Model vol.11, pp.6, 2018, https://doi.org/10.3390/ma11060899
  11. Cytotoxicity and Initial Biocompatibility of Endodontic Biomaterials (MTA and Biodentine ) Used as Root-End Filling Materials vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/7926961
  12. Bioactive-glass in Endodontic Therapy and Associated Microsurgery vol.11, pp.None, 2017, https://doi.org/10.2174/1874210601711010164
  13. Microleakage Assessment of a Pozzolan Cement-based Mineral Trioxide Aggregate Root Canal Sealer vol.44, pp.1, 2014, https://doi.org/10.5933/jkapd.2017.44.1.20
  14. Cytotoxicities and genotoxicities of cements based on calcium silicate and of dental formocresol vol.815, pp.None, 2014, https://doi.org/10.1016/j.mrgentox.2017.01.001
  15. Comparison of Gap Volume after Retrofilling Using 4 Different Filling Materials: Evaluation by Micro-computed Tomography vol.44, pp.4, 2014, https://doi.org/10.1016/j.joen.2017.11.009
  16. Anti-inflammatory and Mineralization Effects of ProRoot MTA and Endocem MTA in Studies of Human and Rat Dental Pulps In Vitro and In Vivo vol.44, pp.10, 2014, https://doi.org/10.1016/j.joen.2018.07.012
  17. Biocompatibility of Biodentine™ ® with Periodontal Ligament Stem Cells: In Vitro Study vol.8, pp.1, 2014, https://doi.org/10.3390/dj8010017
  18. Cell migration and osteo/odontogenesis stimulation of iRoot FS as a potential apical barrier material in apexification vol.53, pp.4, 2020, https://doi.org/10.1111/iej.13237
  19. Physicochemical Properties, Cytocompatibility, and Biocompatibility of a Bioactive Glass Based Retrograde Filling Material vol.11, pp.7, 2021, https://doi.org/10.3390/nano11071828