DOI QR코드

DOI QR Code

Homeogenous Etched Pits on the Surface of Nb by Electrochemical Micromachining

전기화학적 마이크로머시닝 기술을 이용한 균일한 니오븀 표면 에칭 연구

  • Kim, Kyungmin (Department of Chemical Engineering, Inha University) ;
  • Yoo, Hyeonseok (Department of Chemical Engineering, Inha University) ;
  • Park, Jiyoung (Department of Chemical Engineering, Inha University) ;
  • Shin, Sowoon (Department of Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemical Engineering, Inha University)
  • Received : 2013.09.23
  • Accepted : 2013.11.11
  • Published : 2014.02.10

Abstract

We describe the preparation of highly-ordered etching pits on the Nb foil through a micromachining. The effects of electrochemical polishing on the formation of uniformly-patterned protective epoxy layer was investigated. Unlike the previous process using $O_2$ plasma, well-ordered etched pits were prepared without any dry processes. As a result, the Nb foil with the well-ordered pits of $10{\mu}m{\times}5{\mu}m$ could be obtained by electrochemical etching in methanolic electrolytes for 10 min.

본 연구에서는 micro-contact printing을 통하여 니오븀 호일 표면 위에 균일한 에칭 pits를 형성하였다. 균일한 보호층을 형성하고자 전해연마의 효과를 확인하였으며, 기존의 $O_2$ 플라즈마 공정 없이 손쉽게 균일한 에칭 pits를 형성시킬 수 있는 조건을 확인하였다. 메탄올 혼합 전해질을 사용하여 10 min 동안 에칭을 진행한 결과 니오븀 호일 표면 위에 지름과 간격이 각각 $10{\mu}m$$5{\mu}m$로 잘 정렬된 에칭 pits를 관찰하였다.

Keywords

References

  1. D. Zhu, N. S. Qu, H. S. Li, Y. B. Zeng, D. L. Li, and S. Q. Qian, Electrochemical micromachining of microstructures of micro hole and dimple array, CIRP Ann.-Manuf. Techn., 58, 177 (2009). https://doi.org/10.1016/j.cirp.2009.03.004
  2. B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi, and C. N. Chu, Micro Electrochemical machining of 3D micro structure using dilute sulfuric acid, CIRP Ann.-Manuf. Techn., 54, 191 (2005). https://doi.org/10.1016/S0007-8506(07)60081-X
  3. M. Datta and D. Landolt, Fundamental aspects and applications of electrochemical microfabrication, Electrochem. Acta, 45, 2535 (2000). https://doi.org/10.1016/S0013-4686(00)00350-9
  4. A. C. West, C. Madore, M. Matlosz, and D. Landolt, Shape changes during through-mask electrochemical micromachining of thin metal films, J. Electrochem. Soc., 139, 499 (1992). https://doi.org/10.1149/1.2069245
  5. M. Datta, Fabrication of an array of precision nozzles by through-mask electrochemical micromachining, J. Electrochem. Soc., 142, 3801 (1995). https://doi.org/10.1149/1.2048416
  6. A. P. Malshe, K. Virwani, K. P. Rajurkar, and D. Deshpande, Investigation of nanoscale electro machining (nano-EM) in dielectric oil, CIRP Ann.-Manuf. Techn., 54, 175 (2005). https://doi.org/10.1016/S0007-8506(07)60077-8
  7. P. F. Chauvy, P. Hoffmann, and D. Landolt, Electrochemical micromachining of titanium using laser oxide film lithography : excimer laser irradiation of anodic oxide, Appl. Surf. Sci., 211, 113 (2003). https://doi.org/10.1016/S0169-4332(03)00256-3
  8. K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu, R. Resnick, and A. DeSilva, Micro and nano machining by electro-physical and chemical processes, CIRP Ann.-Manuf. Techn., 55, 643 (2006). https://doi.org/10.1016/j.cirp.2006.10.002
  9. C. Kim, J. Y. Kim, and B. Sridharan, Comparative evaluation of drying techniques for surface micromachining, Sensor. Actuat. A-Phys., 64, 17 (1998). https://doi.org/10.1016/S0924-4247(98)80053-8
  10. D. K. Wickenden, J. L. Champion, R. Osiander, R. B. Givens, J. L. Lamb, J. A. Miragliotta, D. A. Oursler, and T. J. Kistenmacher, Micromachined polysilicon resonating xylophone bar magnetometer, Acta Astronaut., 52, 142 (2003).
  11. S. C. Jakeway, A. J. de Mello, and E. L. Russell, Miniaturized total analysis systems for biological analysis, Anal. Bioanal. Chem., 366, 525 (2000).
  12. X. Lu and Y. Leng, Electrochemical micromachining of titanium surfaces for biomedical applications, J. Mater. Process. Tech., 169, 173 (2005). https://doi.org/10.1016/j.jmatprotec.2005.04.040
  13. S. A. McAuley, H. Asharf, L. Atabo, A. Chambers, S. Hall, J. Hopkins, and G. Nicholls, Silicon micromachining using a high-density plasma source, J. Phys. D Appl. Phys., 34, 2769 (2001). https://doi.org/10.1088/0022-3727/34/18/309
  14. L. P. B. Katehi, J. F. Harvey, and K. J. Herrick, 3-D integration of RF circuits using Si micromachining, IEEE Microw. Mag., 2, 30 (2001). https://doi.org/10.1109/6668.918260
  15. Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, Chemical machining, J. Mater. Process Tech., 4, 225 (1993).
  16. P. F. Chauvy, P. Hoffmann, and D. Landolt, Electrochemical micromachining of titanium through a laser patterned oxide film, Electrochem. Solid St., 4, C31 (2001). https://doi.org/10.1149/1.1359057
  17. P. Allongue, P. Jiang, V. Kirchner, A. L. Trimmer, and R. Schuster, Electrochemical micromachining of p-type silicon, J. Phys. Chem. B., 108, 14434 (2004). https://doi.org/10.1021/jp0497312
  18. T. A. Fofonoff, S. M. Martel, N. G. Hatsopoulos, J. P. Donoghue, and I. W. Hunter, Microelectrode array fabrication by electrical discharge machining and chemical etching, IEEE T. Bio-Med. Eng., 51, 890 (2004). https://doi.org/10.1109/TBME.2004.826679
  19. J. A. Kenney and G. S. Hwang, Electrochemical machining with ultrashort voltage pulses: modelling of charging dynamics and feature profile evolution, Nanotechnology, 16, S309 (2005). https://doi.org/10.1088/0957-4484/16/7/001
  20. J. Ihlemann and B. Wolff-Rottke, Excimer laser micro machining of inorganic dielectrics, Appl. Surf. Sci., 106, 282 (1996). https://doi.org/10.1016/S0169-4332(96)00422-9
  21. B. Bhattacharyya, J. Munda, and M. Malapati, Advancement in electrochemical micro-machining, Int. J. Mach. Tool. Manu., 44, 1577 (2004). https://doi.org/10.1016/j.ijmachtools.2004.06.006
  22. M. Datta, R. V. Shenoy, and L. T. Romankiw, Recent advances in the study of electrochemical micromachining, J. Eng. Ind. Trans. ASME, 118, 29 (1996). https://doi.org/10.1115/1.2803644
  23. M. Datta and D. Harris, Electrochemical micromachining : An environmentally friendly, high speed processing technology, Electrochim. Acta, 42, 3007 (1997). https://doi.org/10.1016/S0013-4686(97)00147-3
  24. E. Rosset, M. Datta, and D. Landolt, Electrochemical dissolution of stainless steels in flow channel cells with and without photoresist masks, J. Appl. Electrochem., 20, 69 (1990). https://doi.org/10.1007/BF01012473
  25. L. Cagnon, V. Kirchner, M. Kock, R. Schuster, G. Ertl, W. T. Gmelin, and H. Kuck, Electrochemical micromachining of stainless steel by ultrashort voltage pulses, Z. Phys. Chem., 217, 299 (2003). https://doi.org/10.1524/zpch.217.4.299.20383
  26. M. Datta and L. T. Romankiw, Application of chemical and electrochemical micromachining in the electronics industry, J. Electrochem. Soc., 136, 285 (1989). https://doi.org/10.1149/1.2097055
  27. R. Shuster, V. Kirchner, P. Allongue, and G. Ertl, Electrochemical micromachining, Science, 289, 98 (2000). https://doi.org/10.1126/science.289.5476.98
  28. K. Kim, J. Park, G. Cha, J. E. Yoo, and J. Choi, Electrochemical etching of a niobium foil in methanolic HF for electrolytic capacitor, Mater. Chem. Phys., 141, 810 (2013). https://doi.org/10.1016/j.matchemphys.2013.06.008
  29. J. E. Yoo and J. Choi, Electrochemical surface enlargement of a niobium foil for electrolytic capacitor applications, Electrochem. Commun., 13, 298 (2011). https://doi.org/10.1016/j.elecom.2011.01.009
  30. M. T. Tanvir, Y. Aoki, and H. Habazaki, Improved electrical properties of silicon-incorporated anodic niobium oxide formed on porous Nb-Si substrate, Appl. Surf. Sci., 255, 8383 (2009). https://doi.org/10.1016/j.apsusc.2009.05.094
  31. G. Park, K. Kim, H. Lee, C. Park, Y. Kim, Y. Tak, and J. Choi, Controllable pattering of an Al surface by a PDMS stamp, Appl. Chem. Eng., 23, 501 (2012).