DOI QR코드

DOI QR Code

Conversion of DME to Light Olefins over Mesoporous SAPO-34 Catalyst Prepared by Carbon Nanotube Template

탄소 나노튜브 주형물질에 의해 제조된 메조 세공 SAPO-34 촉매상에서 경질 올레핀으로의 DME 전환 반응

  • Kang, Eun-Jee (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Dong-Hee (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Hyo-Sub (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Choi, Ki-Hwan (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Park, Chu-Sik (Hydrogen and fuel cell department, Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 강은지 (충남대학교 정밀응용화학과) ;
  • 이동희 (충남대학교 정밀응용화학과) ;
  • 김효섭 (충남대학교 정밀응용화학과) ;
  • 최기환 (충남대학교 정밀응용화학과) ;
  • 박주식 (한국에너지기술연구원 수소연료전지연구단) ;
  • 김영호 (충남대학교 정밀응용화학과)
  • Received : 2013.08.21
  • Accepted : 2013.10.29
  • Published : 2014.02.10

Abstract

Mesoporous SAPO-34 catalyst was successfully synthesized by the hydrothermal method using carbon nanotube (CNT) as a secondary template. The effects of CNT contents (0.5, 1.5, 2.5, and 4.5 mol%) on catalytic performances were investigated. The synthesized catalysts were characterized with XRD, SEM, nitrogen physisorption isotherm and $NH_3$-TPD. Among the synthesized catalysts, SAPO-34 catalyst prepared by the addition of 1.5 mol% CNT (1.5C-SAPO-34) observed not only the largest amounts of mesopore volume but also acid sites. However, the mesopore volume was relatively decreased by further increasing of CNT contents due to the formation of small crystalline. The catalytic lifetime and the selectivity of light olefins ($C_2{\sim}C_4$) were examined for the dimethyl ether to olefins reaction. As a result, the 1.5C-SAPO-34 catalyst showed an improvement of ca. 36% in a catalytic lifetime and a better selectivity to light olefins as compared with the general SAPO-34 catalyst.

메조 세공을 갖는 SAPO-34 촉매를 2차 주형 물질로서 탄소 나노튜브(CNT)를 이용한 수열 합성 방법에 의해 성공적으로 합성했으며, CNT 첨가량(0.5, 1.5, 2.5 및 4.5 mol%)이 촉매 성능에 미치는 영향을 조사하였다. 합성된 촉매들은 X-선 회절 분석(XRD), 주사 전자 현미경(SEM), 질소 흡탈착 등온선 및 암모니아 승온 탈착($NH_3$-TPD)을 통해 특성분석을 수행하였다. 합성된 촉매 중에서 1.5 mol% CNT를 첨가하여 제조된 SAPO-34 (1.5C-SAPO-34)가 가장 큰 메조 세공부피를 나타냈을 뿐만 아니라 총 산점의 양도 가장 높은 것으로 관찰되었다. 그러나 CNT의 함량을 그 이상 첨가하여 제조한 촉매들의 경우 결정의 크기가 너무 작아 오히려 메조 세공의 부피가 감소하는 것으로 나타났다. 제조된 촉매들의 dimethyl ether to olefins 반응에서 CNT 함량에 따른 촉매 수명과 경질 올레핀($C_2{\sim}C_4$)의 선택성을 연구하였다. 그 결과 1.5C-SAPO-34 촉매는 기존의 SAPO-34 촉매와 비교하여 더 우수한 경질 올레핀 선택도와 약 36%의 향상된 촉매수명을 나타났다.

Keywords

References

  1. Y. K. Park, J. Y. Jeon, S. Y. Han, J. R. Kim, and C. W. Lee, Catalytic cracking of naphtha into light olefins, Korean Chem. Eng. Res., 41, 549-557 (2003).
  2. Y. Yoshimura, N. Kijima, T. Hayakawa, K. Murata, K. Suzuki, F. Mizukami, K. Matano, T. Konishi, T. Oikawa, M. Saito, T. Shiojima, K. Shiozawa, K. Wakui, G. Sawada, K. Sato, S. Matsuo, and N. Yamaoka, Catalytic cracking of naphtha to light olefins, Catal. Surv. Jpn., 4, 157-167 (2000).
  3. A. T. Najafabadi, S. Fatemi, M. Sohrabi, and M. Salmasi, Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst, J. Ind. Eng. Chem., 18, 29-37 (2012). https://doi.org/10.1016/j.jiec.2011.11.088
  4. Y. H. Song, H. J. Chae, K. E. Jeong, C. U. Kim, C. H. Shin, and S. Y. Jeong, The effect of crystal size of SAPO-34 synthesized using various structure directing agents for MTO reaction, J. Korean Ind. Eng. Chem., 19, 559-567 (2008).
  5. S. C. Baek, Y. J. Lee, and K. W. Jun, Effect of water addition on the conversion of dimethyl ether to light olefins over SAPO-34, Korean Chem. Eng. Res., 44, 345-349 (2006).
  6. S. J. Kim, H. G. Jang, and G. Seo, Methanol-to-olefin conversion over UZM-9 zeolite : effect of transition metal ion exchange on its deactivation, Korea Chem. Eng. Res., 51, 181-188 (2013). https://doi.org/10.9713/kcer.2013.51.2.181
  7. J. W. Park, J. Y. Lee, K. S. Kim, S. B. Hong, and G. Seo, Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions, Appl. Catal. A Gen., 339, 36-44 (2008). https://doi.org/10.1016/j.apcata.2008.01.005
  8. M. Kim, H. J. Chae, T. W. Kim, K. E. Jeong, C. U. Kim, and S. Y. Jeong, Attrition resistance and catalytic performance of spray-dried SAPO-34 catalyst for MTO process : Effect of catalyst phase and acidic solution, J. Ind. Eng. Chem., 17, 621-627 (2011). https://doi.org/10.1016/j.jiec.2011.05.009
  9. M. Salmasi, S. Fatemi, and A. T. Najafabadi, Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates, J. Ind. Eng. Chem., 17, 755-761 (2011). https://doi.org/10.1016/j.jiec.2011.05.031
  10. G. Roohollahi, M. Kazemeini, A. Mohammadrezaee, and R. Golhosseini, The joint reaction of methanol and i-butane over the HZSM-5 zeolite, J. Ind. Eng. Chem., 19, 915-919 (2013). https://doi.org/10.1016/j.jiec.2012.10.032
  11. H. Zhou, Y. Wang, F. Wei, D. Wang, and Z. Wang, In situ synthesis of SAPO-34 crystals grown on to $\alpha-Al_2O_3$ sphere supports as the catalyst for the fluidized bed conversion of dimethyl ether to olefins, Appl. Catal. A Gen., 341, 112-118 (2008). https://doi.org/10.1016/j.apcata.2008.02.030
  12. Y. Chen, H. Zhou, J. Zhu, Q. Zhang, Y. Wang, D. Wang, and F. Wei, Direct synthesis of a fluidizable SAPO-34 catalyst for a fluidized dimethyl ether-to-olefins process, Catal. Lett., 124, 297-303 (2008). https://doi.org/10.1007/s10562-008-9454-0
  13. Z. Liu, C. Sun, G. Wang, Q. Wang, and G. Cai, New progress in R&D of lower olefin synthesis, Fuel Process. Technol., 62, 161-172 (2000). https://doi.org/10.1016/S0378-3820(99)00117-4
  14. G. Seo and B. G. Min, Mechanism of methanol conversion over zeolite and molecular sieve catalysts, Korean Chem. Eng. Res., 44, 329-339 (2006).
  15. J. F. Haw, W. Song, D. M. Marcus, and J. B. Nicholas, The mechanism of methanol to hydrocarbon catalysis, Acc. Chem. Res., 36, 317-326 (2003). https://doi.org/10.1021/ar020006o
  16. J. F. Haw and D. M. Marcus, Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis, Topics Catal., 34, 41-48 (2005). https://doi.org/10.1007/s11244-005-3798-0
  17. C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, and A. Carlsson, Mesoporous zeolite single crystals, J. Am. Chem. Soc., 122, 7116-7117 (2000). https://doi.org/10.1021/ja000744c
  18. I. Schmidt, A. Boisen, E. Gustavsson, K. Stahl, S. Peheson, S. Dahl, A. Carsson, and C. J. H. Jacobsen, Carbon nanotube templated growth of mesoporous zeolite single crystals, Chem. Mater., 13, 4416-4418 (2001). https://doi.org/10.1021/cm011206h
  19. F. Schmidt, S. Paasch, E. Brunner, and S. Kaskel, Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction, Microp. Mesop. Mater., 164, 214-221 (2012). https://doi.org/10.1016/j.micromeso.2012.04.045
  20. E. Peyman, F. Shohreh, A. T. Siamak, Effect of synthesis parameters on phase purity, crystallinity and particle size of SAPO-34, Iran. J. Chem. Chem. Eng., 30, 29-36 (2011).
  21. S. G. Lee, B. K. Yoo, H. S. Je, T. G. Ryu, C. S. Park, and Y. H. Kim, The study on DME (dimethyl ether) conversion over the supported SAPO-34 catalyst, Trans. Korean Hydrogen New Energy Soc., 22, 232-239 (2011).
  22. F. Lonyi and J. Valyon, On the interpretation of the $NH_3$-TPD patterns of H-ZSM-5 and H-mordenite, Microp. Mesop. Mater., 47, 293-301 (2001). https://doi.org/10.1016/S1387-1811(01)00389-4
  23. D. Zhang, Y. Wei, L. Xu, F. Chang, Z. Liu, S. Meng, B. L. Su, and Z. Liu, MgAPSO-34 molecular sieves with various Mg stoichiometries : Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins, Microp. Mesop. Mater., 116, 684-692 (2008). https://doi.org/10.1016/j.micromeso.2008.06.001
  24. W. Song, J. F. Haw, J. B. Nicholas, and C. S. Heneghan, Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34, J. Am. Chem. Soc., 122, 10726-10727 (2000). https://doi.org/10.1021/ja002195g
  25. J. F. Haw, J. B. Nicholas, W. Song, F. Deng, Z. Wang, T. Xu, and C. S. Heneghan, Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5, J. Am. Chem. Soc., 122, 4763-4775 (2000). https://doi.org/10.1021/ja994103x
  26. S. G. Lee, H. S. Kim, Y. H. Kim, E. J. Kang, D. H. Lee, and C. S. Park, Dimethyl ether conversion to light olefins over the SAPO-34/$ZrO_2$ composite catalysts with high life time, J. Ind. Eng. Chem., 20, 61-67 (2014). https://doi.org/10.1016/j.jiec.2013.04.026

Cited by

  1. Effects of Co/Al and Si/Al Molar Ratios on DTO (Dimethyl Ether to Olefins) Reaction over CoAPSO-34 Catalyst vol.26, pp.2, 2015, https://doi.org/10.14478/ace.2014.1128
  2. Effects of Acid Treatment of SAPO-34 on the Catalytic Lifetime and Light Olefin Selectivity during DTO Reaction vol.26, pp.2, 2015, https://doi.org/10.14478/ace.2015.1020
  3. DTO 반응에 미치는 SAPO-34 촉매의 식각 처리 효과 vol.32, pp.1, 2014, https://doi.org/10.14478/ace.2020.1091