References
-
A. Alaca, S. Alaca, and K. S. Williams, The convolution sum
${\Sigma}_{m https://doi.org/10.4153/CMB-2008-001-1, Canad. Math. Bull. 51(1) (2008), 3-14. -
A. Alaca, S. Alaca, and K. S. Williams, The convolution sum
${\Sigma}_{l+24m=n}{\sigma}(l){\sigma}(m)$ and${\Sigma}_{3l+8m=n}{\sigma}(l){\sigma}(m)$ , Math. J. Okayama Univ. 49 (2007), 93-111. - B. C. Berndt, Ramanujan's Notebooks. Part II, Springer-Verlag, New York, 1989.
- B. Cho, D. Kim, and J.-K. Koo, Divisor functions arising from q-series, Publ. Math. Debrecen 76(3-4) (2010), 495-508.
- B. Cho, D. Kim, and J.-K. Koo, Modula forms arising from divisor functions, J. Math. Anal. Appl. 356(2) (2009), 537-547. https://doi.org/10.1016/j.jmaa.2009.03.003
- J. W. L. Glaisher, On the square of the series in which the coeffcients are the sums of the divisors of the exponents, Mess. Math. 14 (1884), 156-163.
- J. W. L. Glaisher, On certain sums of products of quantities depending upon the divisors of a number, Mess. Math. 15 (1885), 1-20.
- J. W. L. Glaisher, Expressions for the five powers of the series in which the coeffcients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.
- H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), 1593-1622. https://doi.org/10.1216/rmjm/1194275937
- J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions, Number theory for the millennium, II, (Urbana, IL, 2000), 229-274, A K Peters, Natick, MA, 2002.
-
D. Kim, A. Kim, and H. Park, Congruences of the Weierstrass
${\wp}(x)$ and${\wp}^{{\prime}{\prime}}(x)(x=\frac{1}{2},\frac{\tau}{2},\frac{{\tau}+1}{2})$ -Functions on divisors, Bull. Korean Math. Soc. 50 (2013), 241-261. https://doi.org/10.4134/BKMS.2013.50.1.241 - D. Kim, A. Kim, and A. Sankaranarayanan, Eisenstein seires and their applications to some arithmetic identities and congruences, Advances in Difference Equations 2013, 2013:84.
- A. Kim, D. Kim and L. Yan, Convolution sums arising from divisor functions, J. Korean Math. Soc. 50 (2013), 331-360. https://doi.org/10.4134/JKMS.2013.50.2.331
- S. Lang, elliptic Functions, Addison-Wesly, 1973.
- Erin McAfee, A three term arithmetic formula of liouville type with application to sums of six squares, B. Math.(Honors), Carleton University, 2004.
- G. Melfi, On some modular identities, Number theory (Eger, 1996), 371-382, de Gruyter, Berlin, 1998, 371-382.