DOI QR코드

DOI QR Code

A REMARK OF ODD DIVISOR FUNCTIONS AND WEIERSTRASS ℘-FUNCTIONS

  • Lee, Kwangchul (Department of Mathematics, Chonbuk National University) ;
  • Kim, Daeyeoul (National Institute for Mathematical Sciences) ;
  • Seo, Gyeong-Sig (Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University)
  • Received : 2013.11.27
  • Accepted : 2013.12.19
  • Published : 2014.03.25

Abstract

In this paper, we study the convolution sums involving odd divisor functions, and their relations to Weierstrass ${\wp}$-functions.

Keywords

References

  1. A. Alaca, S. Alaca, and K. S. Williams, The convolution sum ${\Sigma}_{m, Canad. Math. Bull. 51(1) (2008), 3-14. https://doi.org/10.4153/CMB-2008-001-1
  2. A. Alaca, S. Alaca, and K. S. Williams, The convolution sum ${\Sigma}_{l+24m=n}{\sigma}(l){\sigma}(m)$ and ${\Sigma}_{3l+8m=n}{\sigma}(l){\sigma}(m)$, Math. J. Okayama Univ. 49 (2007), 93-111.
  3. B. C. Berndt, Ramanujan's Notebooks. Part II, Springer-Verlag, New York, 1989.
  4. B. Cho, D. Kim, and J.-K. Koo, Divisor functions arising from q-series, Publ. Math. Debrecen 76(3-4) (2010), 495-508.
  5. B. Cho, D. Kim, and J.-K. Koo, Modula forms arising from divisor functions, J. Math. Anal. Appl. 356(2) (2009), 537-547. https://doi.org/10.1016/j.jmaa.2009.03.003
  6. J. W. L. Glaisher, On the square of the series in which the coeffcients are the sums of the divisors of the exponents, Mess. Math. 14 (1884), 156-163.
  7. J. W. L. Glaisher, On certain sums of products of quantities depending upon the divisors of a number, Mess. Math. 15 (1885), 1-20.
  8. J. W. L. Glaisher, Expressions for the five powers of the series in which the coeffcients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.
  9. H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), 1593-1622. https://doi.org/10.1216/rmjm/1194275937
  10. J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions, Number theory for the millennium, II, (Urbana, IL, 2000), 229-274, A K Peters, Natick, MA, 2002.
  11. D. Kim, A. Kim, and H. Park, Congruences of the Weierstrass ${\wp}(x)$ and ${\wp}^{{\prime}{\prime}}(x)(x=\frac{1}{2},\frac{\tau}{2},\frac{{\tau}+1}{2})$-Functions on divisors, Bull. Korean Math. Soc. 50 (2013), 241-261. https://doi.org/10.4134/BKMS.2013.50.1.241
  12. D. Kim, A. Kim, and A. Sankaranarayanan, Eisenstein seires and their applications to some arithmetic identities and congruences, Advances in Difference Equations 2013, 2013:84.
  13. A. Kim, D. Kim and L. Yan, Convolution sums arising from divisor functions, J. Korean Math. Soc. 50 (2013), 331-360. https://doi.org/10.4134/JKMS.2013.50.2.331
  14. S. Lang, elliptic Functions, Addison-Wesly, 1973.
  15. Erin McAfee, A three term arithmetic formula of liouville type with application to sums of six squares, B. Math.(Honors), Carleton University, 2004.
  16. G. Melfi, On some modular identities, Number theory (Eger, 1996), 371-382, de Gruyter, Berlin, 1998, 371-382.