DOI QR코드

DOI QR Code

The Effect of Mesh Reordering on Laplacian Smoothing for Nonuniform Memory Access Architecture-based High Performance Computing Systems

NUMA구조를 가진 고성능 컴퓨팅 시스템에서의 메쉬 재배열의 라플라시안 스무딩에 대한 효과

  • Kim, Jbium (Department of Computer Science and Engineering, Incheon National University)
  • Received : 2014.01.06
  • Published : 2014.03.25

Abstract

We study the effect of mesh reordering on Laplacian smoothing for parallel high performance computing systems. Specifically, we use the Reverse-Cuthill McKee algorithm to reorder meshes and use Laplacian Smoothing to improve the mesh quality on Nonuniform memory access architecture-based parallel high performance computing systems. First, we investigate the effect of using mesh reordering on Laplacian smoothing for a single core system and extend the idea to NUMA-based high performance computing systems.

우리는 고성능 컴퓨팅 (high performance computing) 시스템에서 메쉬 재배열이 라플라시안 스무딩에 대해서 어떠한 효과가 있는지 연구한다. 구체적으로, 우리는 nonuniform memory access (NUMA) 구조의 고성능 컴퓨팅 시스템에서 Reverse-Cuthill Mckee 알고리즘을 사용하여 메쉬를 재배열하고 메쉬질을 높이기 위하여 라플라시안 스무딩을 사용한다. 먼저 하나의 코어를 사용하여 메쉬 재배열의 라플라시안 스무딩에 대한 속도 향상을 조사한 후에 NUMA구조의 멀티코어 시스템에서 OpenMP를 이용하여 병렬화할 경우 메쉬 재배열의 라플라시안 스무딩에 대한 속도 향상에 대하여 조사한다.

Keywords

References

  1. Z. Majo and T.R. Gross, Memory Management in NUMA Multicore Systems: Trapped between Cache Contention and Interconnect Overhead, Proc. of the International Symposium on Memory Management, pp. 11-20, 2011.
  2. S. Blagodurov and A. Fedorova. User-level Scheduling on NUMA Multicore Systems under Linux, Proc. of the 13 Annual Linux Symposium, pp. 81-92, 2011.
  3. J.A. George and J.W. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981.
  4. L. Freitag, On Combining Laplacian and Optimization-based Mesh Smoothing Techniques, Proc. of the 1997 Joint Summer Meeting of American Society of Mechanical Engineers (ASME) American Society of Civil Engineers (ASCE) and Society of Engineers Science (SES), pp. 37-44, 1997.
  5. OpenMP Architecture Review Board, OpenMP API, http://www.openmp.org/.
  6. S.M. Shontz and P.M. Knupp, The Effect of Vertex Reordering on 2D Local Mesh Optimization Efficiency, Proc. of the 17TH Internatioanl Meshing Roundtable, Sandia National Laboratories, pp. 107-124, 2008.
  7. H. Hoppe. Optimization of Mesh Locality for Transparent Vertex Caching, Proc. of the ACM SIGGRAPH, pp. 269-276, 1999.
  8. J. R. Shewchuk., What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures, Proc. of the 11th International Meshing Roundtable, Sandia National Laboratories, pp. 115-126. 2002.
  9. S. Blagodurv, S. Zhuravlev, and A. Fedorova. Contention-aware Scheduling on Multicore Systems, Proc. of the ACM SIGGRAPH, pp. 269-276, 1999.
  10. T. Ogasawara, NUMA-aware Memory Manager with Dominant-thread-based Copying GC, Proc. of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Language and Applications, pp. 77-390, 2009.
  11. L. Pilla, C. Ribeiro, D. Cordeiro, A. Bhatele, P. Navaux, J. Mehaut, and L. Kale, Improving Parallel System Performance with a NUMA-aware Load Balancer, INRIA-Illinois Joint Labarotory on Petascale Computing, Urbana, IL, Tech. Rep. TR-JLPC-11-02, vol, 20011, 2011.
  12. R.V. Garimella, MSTK - A Flexible Infrastructure Library for Develpoing Mesh Based Applications, Proc. of the 13rd International Meshing Roundtable, Sandia National Laboratories, pp. 203-212. 2004.