DOI QR코드

DOI QR Code

Optical and Magnetic Properties of Copper Doped Zinc Oxide Nanofilms

  • Zhao, Shifeng (School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University) ;
  • Bai, Yulong (School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University) ;
  • Chen, Jieyu (School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University) ;
  • Bai, Alima (School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University) ;
  • Gao, Wei (School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University)
  • Received : 2014.01.26
  • Accepted : 2014.03.13
  • Published : 2014.03.31

Abstract

Copper doped Zinc Oxide nanofilms were prepared using a simple and low cost wet chemical method. The microstructures, phase structure, Raman shift and optical absorption spectrum as well as magnetization were investigated for the nanofilms. Room temperature ferromagnetism has been observed for the nanofilms. Structural analyses indicated that the films possess wurtzite structure and there are no segregated clusters of impurity phase appreciating. The results show that the ferromagnetism in Copper doped Zinc Oxide nanofilms is driven either by a carrier or defect-mediated mechanism. The present work provides an evidence for the origin of ferromagnetism on Copper doped Zinc Oxide nanofilms.

Keywords

References

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001). https://doi.org/10.1126/science.1065389
  2. D. D. Awschalom and M. E. Flatte, Nature Physics 3, 153 (2007). https://doi.org/10.1038/nphys551
  3. T. Dielt, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000). https://doi.org/10.1126/science.287.5455.1019
  4. J. J. Wu, S. C. Liu, and M. H. Yan: Appl. Phys. Lett. 85, 1027 (2004). https://doi.org/10.1063/1.1779958
  5. Y. H. Lin, M. Ying, M. Li, X. Wang, and C. W. Nan, Appl. Phys. Lett. 90, 222110 (2007). https://doi.org/10.1063/1.2745247
  6. C. L. Tsai, Y. J. Lin, J. H. Chen, H. C. Chang, Y. H. Chen, L. Horng, and Y. T. Shih, Solid State Commun. 152, 488 (2012). https://doi.org/10.1016/j.ssc.2011.12.046
  7. S. Lardjane, G. Merad, N. Fenineche, A. Billard, and H. I. Faraoun, J. Alloys Compd. 551, 306 (2013). https://doi.org/10.1016/j.jallcom.2012.09.120
  8. S. P. Nanavati, V. Sundararajan, S. Mahamuni, S. V. Ghaisas, and V. Kumar, Phys. Rev. B 86, 205320 (2012). https://doi.org/10.1103/PhysRevB.86.205320
  9. A. Wojcik, K. Kopalko, M. Godlewski, E. Guziewicz, R. Jakie a, R. Minikayev, and W. Paszkowicz, Appl. Phys. Lett. 89, 051907 (2006). https://doi.org/10.1063/1.2245209
  10. N. Spaldin, Phys. Rev. B 69, 125201 (2004). https://doi.org/10.1103/PhysRevB.69.125201
  11. T. Fukumura, Z. Jin, A. Ohmoto, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 78, 958 (2001). https://doi.org/10.1063/1.1348323
  12. M. Tay, Y. Wu, G. C. Han, T. W. Chong, Y. K. Zheng, S. J. Wang, Y. Chen, and X. Pan, J. Appl. Phys. 100, 063910 (2006). https://doi.org/10.1063/1.2348632
  13. S. F. Zhao, C. H. Yao, Q. Lu, F. Q. Song, J. G. Wan, and G. H. Wang, Transactions of Nonferrous Metals Society of China 19, 1450 (2009). https://doi.org/10.1016/S1003-6326(09)60049-2
  14. C. L. Tsai, Y. J. Lin, C. J. Liu, L. Horng, Y. T. Shih, M. S. Wang, C. S. Huang, C. S. Jhang, Y. H. Chen, and H. C. Chang, Appl. Surf. Sci. 255, 8643 (2009). https://doi.org/10.1016/j.apsusc.2009.06.040
  15. K. R. Kittilstved and D. R. Gamelin, J. Am. Chem. Soc. 127, 5292 (2005). https://doi.org/10.1021/ja050723o
  16. H. S. Hsu, J. C. A. Huang, S. F. Chen, and C. P. Liu, Appl. Phys. Lett. 90, 102506 (2007). https://doi.org/10.1063/1.2711763
  17. O. Mounkachi, A. Benyoussef, A. E. Kenz, E. H. Saidi, and E. K. Hill, J. Appl. Phys. 106, 093905 (2009). https://doi.org/10.1063/1.3248301
  18. B. Panigrahy, M. Aslam, and D. Bahadur, Appl. Phys. Lett. 98, 183109 (2011). https://doi.org/10.1063/1.3574772
  19. C. L. Tsai, Y. J. Lin, J. H. Chen, H. C. Chang, Y. H. Chen, L. Horng, and Y. T. Shih, Solid State Commun. 152m, 488 (2012).
  20. L. H. Ye, A. J. Freeman, and B. Delley, Phys. Rev. B 73, 033203 (2006).
  21. S. Karamat, R. S. Rawat, T. L. Tan, P. Lee , S. V. Springham, Anis-ur-Rehman, R. Chen, and H. D. Sun, J. Supercond Nov Magn. 26, 187 (2013). https://doi.org/10.1007/s10948-012-1710-2
  22. C. Sudakar, J. S. Thakur, G. Lawes, R. Naik, and V. M. Naik, Phys. Rev B 75, 054423 (2007). https://doi.org/10.1103/PhysRevB.75.054423
  23. D. L. Hou, X. J. Ye, H. J. Meng, H. J. Zhou, X. L. Li, C. M. Zhen, and G. D. Tang, Appl. Phys. Lett. 90, 142502 (2007). https://doi.org/10.1063/1.2719034
  24. M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, Thin Solid Films 403, 485 (2002).
  25. H. Q. Yan, R. R. He, J. Justin, L. Matthew, S. Richard, and J. P. D. Yang, J. Am. Chem. Soc. 125, 4728 (2003). https://doi.org/10.1021/ja034327m
  26. M. Ferhat, A. Zaoui, and R. Ahuja, Appl. Phys. Lett. 94, 142502 (2009). https://doi.org/10.1063/1.3112603
  27. A. Umar, and Y. B. Hahn, Appl. Phys. Lett. 88, 173120 (2006). https://doi.org/10.1063/1.2200472
  28. J. J. Wu and S. C. Liu, J. Phys. Chem. B 106, 9546 (2002). https://doi.org/10.1021/jp025969j
  29. A. K. Pradhan, K. Zhang, G. B. Loutts, U. N. Roy, Y. Cui, and A. Burger, J. Phys. Condens. Matter 16, 7123 (2004). https://doi.org/10.1088/0953-8984/16/39/043
  30. X. F. Wang, J. B. Xu, W. Y. Cheung, J. An, and N. Ke, Appl. Phys. Lett. 90, 212502 (2007). https://doi.org/10.1063/1.2741408