References
- Pink DH. Investing in tomorrow's liquid gold [Internet]. [place unknown]: Yahoo.com;2006 [cited 2006 Apr 19]. Available from: https://groups.yahoo.com/neo/groups/DESCinvest/ conversations/topics/102?var=1&l=1.
- Sigel H, Sigel A. Metal ions in biological systems. New York: Marcel Dekker; 1985.
- Martins RJ, Pardo R, Boaventura RA. Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Res. 2004;38:693-699. https://doi.org/10.1016/j.watres.2003.10.013
- Rout K, Mohapatra M, Mohapatra BK, Anand S. Pb(II), Cd(II) and Zn(II) adsorption on low grade manganese ore. Int. J. Eng. Sci. Technol. 2009;1:106-122.
- Chakravarty S, Dureja V, Bhattacharyya G, Maity S, Bhattacharjee S. Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Res. 2002;36:625-632. https://doi.org/10.1016/S0043-1354(01)00234-2
- Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. J. Appl. Geochem. 2002;17:517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
- Bhumbla DK, Keefer RF. Arsenic mobilization and bioavail ability in soils. In: Nriagu JO, ed. Arsenic in the environment: Part I. Cycling and characterization. New York: John Wiley & Sons; 1994. p. 51-82.
- Kim MJ, Nriagu J, Haack S. Arsenic species and chemistry in groundwater of southeast Michigan. Environ. Pollut. 2002;120:379-390. https://doi.org/10.1016/S0269-7491(02)00114-8
- Burkel RS, Stoll RC. Naturally occurring arsenic in sandstone aquifer water supply wells of Northeastern Wisconsin. Groundw. Monit. Remediat. 1999;19:114-121. https://doi.org/10.1111/j.1745-6592.1999.tb00212.x
- Cebrian ME, Albores A, Aguilar M, Blakely E. Chronic arsenic poisoning in the north of Mexico. Hum. Toxicol. 1983;2:121-133. https://doi.org/10.1177/096032718300200110
- Dhar RK, Biswas BK, Samanta G, et al. Groundwater arsenic calamity in Bangladesh. Curr. Sci. 1997;73:48-59.
- Karim MM. Arsenic in groundwater and health problems in Bangladesh. Water Res. 2000;34:304-310. https://doi.org/10.1016/S0043-1354(99)00128-1
- Das D, Chatterjee A, Mandal BK, Samanta G, Chakraborti D, Chanda B. Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. Analyst 1995;120:917-924. https://doi.org/10.1039/an9952000917
- Chatterjee A, Das D, Mandal BK, Chowdhury TR, Samanta G, Chakraborti D. Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 1. Arsenic species in drinking water and urine of the affected people. Analyst 1995;120:643-650. https://doi.org/10.1039/an9952000643
- Jain CK, Ali I. Arsenic: occurrence, toxicity and speciation techniques. Water Res. 2000;34:4304-4312. https://doi.org/10.1016/S0043-1354(00)00182-2
- An B, Steinwinder TR, Zhao D. Selective removal of arsenate from drinking water using a polymeric ligand exchanger. Water Res. 2005;39:4993-5004. https://doi.org/10.1016/j.watres.2005.10.014
- Wang L, Fields KA, Chen AS. Arsenic removal from drinking water by ion exchange and activated alumina plants. Cincinnati: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency; 2000.
- Smedley PL, Kinniburgh DG. United Nations synthesis report on arsenic in drinking water. Geneva: World Health Organization;2001.
- Kipling MD. Arsenic. In: Lenihan JM, Fletcher WW, eds. The chemical environment. Glasgow: Academic Press; 1977. p.93-120.
- World Health Organization. Arsenic (Environmental Health Criteria 18). Geneva: World Health Organization; 1981.
- Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta 2002;58:201-235. https://doi.org/10.1016/S0039-9140(02)00268-0
- DeSesso JM, Jacobson CF, Scialli AR, Farr CH, Holson JF. An assessment of the developmental toxicity of inorganic arsenic. Reprod. Toxicol. 1998;12:385-433. https://doi.org/10.1016/S0890-6238(98)00021-5
- Duker AA, Carranza EJ, Hale M. Arsenic geochemistry and health. Environ. Int. 2005;31:631-641. https://doi.org/10.1016/j.envint.2004.10.020
- Ng JC, Wang J, Shraim A. A global health problem caused by arsenic from natural sources. Chemosphere 2003;52:1353-1359. https://doi.org/10.1016/S0045-6535(03)00470-3
- Tiwari D, Lee SM. Novel hybrid materials in the remediation of ground waters contaminated with As(III) and As(V). Chem. Eng. J. 2012;204-206:23-31. https://doi.org/10.1016/j.cej.2012.07.086
- Lee SM, Tiwari D. Organo-modified sericite in the remediation of an aquatic environment contaminated with As(III) or As(V). Environ. Sci. Pollut. Res. 2014;21:407-418. https://doi.org/10.1007/s11356-013-1830-7
- Lalhmunsiama, Tiwari D, Lee SM. Activated carbon and manganese coated activated carbon precursor to dead biomass in the remediation of arsenic contaminated water. Environ. Eng. Res. 2012;17(S1):S41-S48. https://doi.org/10.4491/eer.2012.17.1.041
- Al-Sewailem MS, Khaled EM, Mashhady AS. Retention of copper by desert sands coated with ferric hydroxides. Geoderma 1999;89:249-258. https://doi.org/10.1016/S0016-7061(98)00082-2
- Gadde RR, Laitinen HA. Heavy metal adsorption by hydrous iron and manganese oxides. Anal. Chem. 1974;46:2022-2026. https://doi.org/10.1021/ac60349a004
- Han R, Zou W, Zhang Z, Shi J, Yang J. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: I. Characterization and kinetic study. J. Hazard. Mater. 2006;137:384-395. https://doi.org/10.1016/j.jhazmat.2006.02.021
- Han R, Lu Z, Zou W, Daotong W, Shi J, Jiujun Y. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: II. Equilibrium study and competitive adsorption. J. Hazard. Mater. 2006;137:480-488. https://doi.org/10.1016/j.jhazmat.2006.02.018
- Deschamps E, Ciminelli VS, Holl WH. Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample. Water Res. 2005;39:5212-5220. https://doi.org/10.1016/j.watres.2005.10.007
- Lee CI, Yang WF, Hsieh CI. Removal of copper(II) by manganese- coated sand in a liquid fluidized-bed reactor. J. Hazard. Mater. 2004;114:45-51. https://doi.org/10.1016/j.jhazmat.2004.06.033
- Ahammed MM, Meera V. Iron hydroxide-coated sand filter for household drinking water from roof-harvested rainwater. J. Water Supply Res. Technol. 2006;55:493-498. https://doi.org/10.2166/aqua.2006.052
- Yang JK, Song KH, Kim BK, Hong SC, Cho DE, Chang YY. Arsenic removal by iron and manganese coated sand. Water Sci. Technol. 2007;56:161-169.
- Lee SM, Kim WG, Laldawngliana C, Tiwari D. Removal behavior of surface modified sand for Cd(II) and Cr(VI) from aqueous solutions. J. Chem. Eng. Data 2010;55:3089-3094.
- Lee SM, Tiwari D, Choi KM, Yang JK, Chang YY, Lee HD. Removal of Mn(II) from aqueous solutions using manganesecoated sand samples. J. Chem. Eng. Data 2009;54:1823-1828.
- Tiwari D, Laldanwngliana C, Choi CH, Lee SM. Manganesemodified natural sand in the remediation of aquatic environment contaminated with heavy metal toxic ions. Chem. Eng. J. 2011;171:958-966. https://doi.org/10.1016/j.cej.2011.04.046
- Lee SM, Laldawngliana C, Tiwari D. Iron oxide nano-particles- immobilized-sand material in the treatment of Cu(II), Cd(II) and Pb(II) contaminated waste waters. Chem. Eng. J. 2012;195-196:103-111. https://doi.org/10.1016/j.cej.2012.04.075
- Tiwari D, Yu MR, Kim MN, et al. Potential application of manganese coated sand in the removal of Mn(II) from aqueous solutions. Water Sci. Technol. 2007;56:153-160.
- Thomas HC. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 1944;66:1664-1666. https://doi.org/10.1021/ja01238a017
- Koulouris G. Dynamic studies on sorption characteristics of 226Ra on manganese dioxide. J. Radioanal. Nucl. Chem. 1995;193:269-279. https://doi.org/10.1007/BF02039884
- Boonfueng T, Axe L, Xu Y. Properties and structure of manganese oxide-coated clay. J. Colloid. Interface Sci. 2005;281:80-92. https://doi.org/10.1016/j.jcis.2004.08.048
- Malkoc E. Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. J. Hazard. Mater. 2006;137:899-908. https://doi.org/10.1016/j.jhazmat.2006.03.004
- Tiwari D, Kim HU, Lee SM. Removal behaviour of sericite for Cu(II) and Pb(II) from aqueous solutions: batch and column studies. Sep. Purif. Technol. 2007;57:11-16. https://doi.org/10.1016/j.seppur.2007.03.005
- Benes P, Majer V. Trace chemistry of aqueous solutions. Amsterdam: Elsevier; 1980.
-
Mishra SP, Tiwari D, Dubey RS, Mishra M. Biosorptive behavior of casein for
$Zn^{2+}$ ,$Hg^{2+}$ and$Cr^{3+}$ effects of physico-chemical treatments. Bioresour. Technol. 1998;63:1-5. https://doi.org/10.1016/S0960-8524(97)00110-7 - Sparks DL. Environmental soil chemistry. San Diego: Academic Press; 1995.
- Harns WD Jr, Robinson RB. Softening by fluidized-bed crystallizers. J. Environ. Eng. 1992;118:513-529. https://doi.org/10.1061/(ASCE)0733-9372(1992)118:4(513)
- Aktor H. Continuous high rate removal of chromate in a fluidized bed without sludge generation. Water Sci. Technol. 1994;30:31-40.
- Nielsen PB, Christensen TC, Vendrup M. Continuous removal of heavy metals from FGD wastewater in a fluidised bed without sludge generation. Water Sci. Technol. 1997;36:391-397.
- Scholler M, van Dijk JC, Wilms D. Recovery of heavy metals by crystallization. Met. Finish. 1987;85:31-34.
- Wilms D, Vercamst K, van Dijk JC. Recovery of silver by crystallization of silver carbonate in a fluidized bed reactor. Water Res. 1992;26:235-239. https://doi.org/10.1016/0043-1354(92)90223-Q
Cited by
- Synthesis of some novel adsorbents for antimicrobial activity and removal of arsenic from drinking water vol.32, pp.4, 2015, https://doi.org/10.1007/s11814-014-0269-y
- Efficient removal of 17β-estradiol using hybrid clay materials: Batch and column studies vol.21, pp.2, 2016, https://doi.org/10.4491/eer.2016.003
- Application of a novel electrochemical sensor containing organo-modified sericite for the detection of low-level arsenic vol.23, pp.2, 2016, https://doi.org/10.1007/s11356-015-5747-1
- Use of hybrid materials in the trace determination of As(V) from aqueous solutions: An electrochemical study vol.22, pp.2, 2017, https://doi.org/10.4491/eer.2016.045
- Porous hybrid materials in the remediation of water contaminated with As(III) and As(V) vol.270, pp.None, 2014, https://doi.org/10.1016/j.cej.2015.02.053
- Aminoalkyl-organo-silane treated sand for the adsorptive removal of arsenic from the groundwater: Immobilizing the mobilized geogenic contaminants vol.425, pp.None, 2014, https://doi.org/10.1016/j.jhazmat.2021.127916