DOI QR코드

DOI QR Code

Optimal sensor placement for mode shapes using improved simulated annealing

  • Tong, K.H. (Faculty of Civil Engineering, Universiti Teknologi) ;
  • Bakhary, Norhisham (Faculty of Civil Engineering, Universiti Teknologi) ;
  • Kueh, A.B.H. (Construction Research Centre, Universiti Teknologi) ;
  • Yassin, A.Y. Mohd (Faculty of Civil Engineering, Universiti Teknologi)
  • Received : 2012.10.30
  • Accepted : 2013.04.02
  • Published : 2014.03.25

Abstract

Optimal sensor placement techniques play a significant role in enhancing the quality of modal data during the vibration based health monitoring of civil structures, where many degrees of freedom are available despite a limited number of sensors. The literature has shown a shift in the trends for solving such problems, from expansion or elimination approach to the employment of heuristic algorithms. Although these heuristic algorithms are capable of providing a global optimal solution, their greatest drawback is the requirement of high computational effort. Because a highly efficient optimisation method is crucial for better accuracy and wider use, this paper presents an improved simulated annealing (SA) algorithm to solve the sensor placement problem. The algorithm is developed based on the sensor locations' coordinate system to allow for the searching in additional dimensions and to increase SA's random search performance while minimising the computation efforts. The proposed method is tested on a numerical slab model that consists of two hundred sensor location candidates using three types of objective functions; the determinant of the Fisher information matrix (FIM), modal assurance criterion (MAC), and mean square error (MSE) of mode shapes. Detailed study on the effects of the sensor numbers and cooling factors on the performance of the algorithm are also investigated. The results indicate that the proposed method outperforms conventional SA and Genetic Algorithm (GA) in the search for optimal sensor placement.

Keywords

References

  1. Cha, Y.J., Raich, A., Barosso, L. and Agrawal, A. (2011), "Optimal placement of active control devices and sensors in frame structures using multi‐objective genetic algorithms", Struct. Control Health Monit., 20(1), 16-44.
  2. El-Borgi, S., Neifar, M., Cherif, F., Choura, S. and Smaoui, H. (2008), "Modal identification, model updating and nonlinear analysis of a reinforced concrete bridge", J.Vib. Control., 14(4), 511-530. https://doi.org/10.1177/1077546307079788
  3. Furuya, H. and Haftka, R.T. (1996), "Combining genetic and deterministic algorithms for locating actuators on space structures", J. Spacecraft Rockets, 33(3), 422-427. https://doi.org/10.2514/3.26777
  4. Glover, F. and Laguna, M. (1989), "Tabu search - Part I", ORSA J. Comp., 1 190-206. https://doi.org/10.1287/ijoc.1.3.190
  5. Glover, F. and Laguna, M. (1990), "Tabu search - Part II", ORSA J. Comp., 2 4-32. https://doi.org/10.1287/ijoc.2.1.4
  6. Guo, H.Y., Hang. L.Z., Zhang, L.L. and Zhou, J.X. (2004), "Optimal placement of sensors for structural health monitoring using improved genetic algorithms" , Smart Mater. Struct., 13(3), 528-534. https://doi.org/10.1088/0964-1726/13/3/011
  7. Henshell, R.D. and Ong, J.H. (1974), "Automatic masters for eigenvalue economization", Earthq. Eng. Struct. D., 3(4), 375-383. https://doi.org/10.1002/eqe.4290030408
  8. Kammer, D.C. (1990), "Sensor placement for on-orbit modal identification and correlation of large space structures" , Proceedings of the 19th American Control Conference, Califonia.
  9. Kammer, D.C. and Yao, L. (1994), "Enhancement of on-orbit modal identification of large space structures 405 through sensor placement", J. Sound Vib., 171(1), 119-139. https://doi.org/10.1006/jsvi.1994.1107
  10. Kang, F., Li, J.J. and Xu, Q. (2008), "Virus coevolution partheno-genetic algorithms for optimal sensor placement", Adv. Eng. Inform., 22(3), 362-370. https://doi.org/10.1016/j.aei.2008.02.001
  11. Kirkpatrick, S., Gelatt, C.D. Jr and Vecchi, M.P. (1983), "Optimization by simulated annealing", Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
  12. Li, D.S., Li, H.N. and Fritzen, C.P. (2007), " The connection between effective independence and modal kinetic energy methods for sensor placement", J. Sound Vib., 305(4-5), 945-955. https://doi.org/10.1016/j.jsv.2007.05.004
  13. Li, D.S., Li, H.N. and Fritzen, C.P. (2012), "Load dependent sensor placement method: theory and experimental validation", Mech. Syst. Signal Pr., 31(0), 217-227. https://doi.org/10.1016/j.ymssp.2012.04.014
  14. Liu, W., Gao, W.C., Sun, Y. and Xu, M.J. (2008), "Optimal sensor placement for spatial lattice structure based on genetic algorithms", J. Sound Vib., 317(1-2), 175-189. https://doi.org/10.1016/j.jsv.2008.03.026
  15. Liu, W., Hou, Z.K. and Demetriou, M.A. (2006), "A computational scheme for the optimal sensor and actuator placement of flexible structures using spatial measures", Mech. Syst. Signal Pr., 20(4), 881-895. https://doi.org/10.1016/j.ymssp.2005.08.030
  16. Meng, X., Dodson, A.H. and Roberts, G.W. (2007), "Detecting bridge dynamics with GPS and triaxial accelerometers", Eng. Struct., 29(11), 3178-3184. https://doi.org/10.1016/j.engstruct.2007.03.012
  17. Meo, M. and Zumpano, G. (2005), "On the optimal sensor placement techniques for a bridge structure", Eng. Struct., 27(10), 1488-1497. https://doi.org/10.1016/j.engstruct.2005.03.015
  18. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N. and Teller, A.H. (1953), "Equation of state calculations by fast computing machines", J. Chem. Phys., 26(6), 1087-1092.
  19. Miki, M., Hiwa, S. and Hiroyasu, T. (2006), "Simulated annealing using an adaptive search vector", Proceedings of the IEEE Conference on Cybernetics and Intelligent Syst., Bangkok.
  20. Ponslet, E., Haftka, R.T. and Cudney, H.H. (1993), "Optimal placement of tuning masses on truss structures by genetic algorithms", Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC Struct., Structl. Dyn. and Mater. Conference, California.
  21. Rao, A.R.M. and Anandakumar, G. (2007), "Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique", Smrt. Mater. Struct., 16(6), 2658-2672. https://doi.org/10.1088/0964-1726/16/6/071
  22. Salama, M., Rose, T. and Garba, J. (1987), "Optimal placement of excitation and sensors for verification of large dynamical systems", Proceedings of the 28th Struct., Structl. Dyn. and Mater. Conference, California.
  23. Stephan, C. (2012), "Sensor placement for modal identification", Mech. Syst. Signal Pr., 27, 461-470. https://doi.org/10.1016/j.ymssp.2011.07.022
  24. Swann, C. and Chattopadhyay, A. (2006) "Optimization of Piezoelectric Sensor Location for Delamination Detection in Composite Laminates", Eng. Opt., 38(5),511-528. https://doi.org/10.1080/03052150600557841
  25. Worden, K. and Burrows, A.P. (2001), "Optimal sensor placement for fault detection", Eng. Struct., 23(8), 885-901. https://doi.org/10.1016/S0141-0296(00)00118-8
  26. Xia, Y. and Hao, H. (2000), "Measurement selection for vibration-based structural damage identification", J. Sound Vib., 236(1), 89-104. https://doi.org/10.1006/jsvi.2000.2960
  27. Yi, T.H., Li, H.N. and Zhang, X.D. (2012), "A modified monkey algorithm for optimal sensor placement in structural health monitoring", Smart Mater. Struct., 21(10), 105033. https://doi.org/10.1088/0964-1726/21/10/105033
  28. Yu, T.K. and Seinfeld, J.H. (1973), "Observability and optimal measurement location in linear distributed parameter systems", Int. J. Control, 18(4), 785-799. https://doi.org/10.1080/00207177308932556

Cited by

  1. A hybrid method of optimal sensor placement for dynamic response monitoring of hydro-structures vol.13, pp.5, 2017, https://doi.org/10.1177/1550147717707728
  2. Optimal sensor placement for damage detection of bridges subject to ship collision vol.24, pp.9, 2017, https://doi.org/10.1002/stc.1963
  3. Strain gauge placement optimization for structural performance assessment vol.141, 2017, https://doi.org/10.1016/j.engstruct.2017.03.031
  4. Application of model reduction technique and structural subsection technique on optimal sensor placement of truss structures vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.355
  5. Generic Framework of Sensor Placement Optimization for Structural Health Modeling vol.31, pp.4, 2017, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000662
  6. Optimization of sensor placement for structural health monitoring: a review pp.1741-3168, 2019, https://doi.org/10.1177/1475921719825601
  7. Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm vol.20, pp.6, 2014, https://doi.org/10.12989/sss.2017.20.6.769
  8. An EGO-like optimization framework for sensor placement optimization in modal analysis vol.27, pp.7, 2014, https://doi.org/10.1088/1361-665x/aac12b
  9. Sensor Distribution Optimization for Structural Impact Monitoring Based on NSGA-II and Wavelet Decomposition vol.18, pp.12, 2014, https://doi.org/10.3390/s18124264
  10. Computational methodologies for optimal sensor placement in structural health monitoring: A review vol.19, pp.4, 2014, https://doi.org/10.1177/1475921719877579
  11. A multi‐objective genetic algorithm strategy for robust optimal sensor placement vol.36, pp.9, 2014, https://doi.org/10.1111/mice.12646