참고문헌
- Andrawes, B. and DesRoches, R. (2007), "Comparison between shape memory alloy seismic restrainers and other bridge retrofit devices", J. Bridge Eng., 12(6), 700-709. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:6(700)
- Ben Mekki, O. and Auricchio, F. (2011), "Performance evaluation of shape-memory-alloy super elastic behavior to control a stay cable in cable-stayed bridges", Int. J. Nonlinear Mech., 46(2), 470-477. https://doi.org/10.1016/j.ijnonlinmec.2010.12.002
- Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
- Casciati, F., Casciati, S. and Faravelli, L. (2007), "Fatigue characterization of a Cu-based shape memory alloy", Proc. Est. Acad. Sci. - PH., 56(2), 207-217.
- Casciati, F., Casciati, S., Faravelli, L. and Marzi, A. (2011), "Fatigue damage accumulation in a Cu-based shape memory alloy: preliminary investigation", CMC, 23(3), 287-306.
- Casciati, S. and Faravelli, L. (2008), "Structural components in shape memory alloy for localized energy dissipation", Comput. Struct., 86(3-5), 330-339. https://doi.org/10.1016/j.compstruc.2007.01.037
- Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073
- Casciati, S. and Marzi, A. (2011), "Fatigue tests on SMA bars in span control", Eng. Struct., 33(4), 1232-1239. https://doi.org/10.1016/j.engstruct.2010.12.045
- De-Castro-Bubani, F., Sade, M., Torra, V., Lovey, F. and Yawny, A. (2013), "Stress induced martensitic yransformations and phases stability in Cu-Al-Be shape memory single crystals", Mater. Sci. Eng., 583, 129-139. https://doi.org/10.1016/j.msea.2013.06.071
- DesRoches, R. and Smith, B. (2004), "Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations", J. Earthq. Eng., 8(3), 415-429.
- Di Cesare, A., Ponzo, F.C., Nigro, D., Dolce, M. and Moroni, C. (2012), "Experimental and numerical behaviour of hysteretic and visco-recentring energy dissipating bracing systems", Bull Earthq. Eng., 10, 1585-1607. https://doi.org/10.1007/s10518-012-9363-x
- Dolce, M. and Cardone, D. (2001a), "Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion", Int . J. Mech. Sci., 43, 2631-2656 https://doi.org/10.1016/S0020-7403(01)00049-2
- Dolce, M. and Cardone, D. (2001b), "Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension", Int . J. Mech. Sci., 43, 2657-2677 https://doi.org/10.1016/S0020-7403(01)00050-9
- Dolce, M. and Cardone, D. (2006), "Theoretical and experimental studies for the application of shape memory alloys in civil engineering", J. Eng. Mater.- T ASME, 128(3), 302-311. https://doi.org/10.1115/1.2203106
- Eggeler, G., Khalil-Allafi, J., Gollerthan, S., Somsen, C., Schmahl, W. and Sheptyakov, D. (2005), "On the effect of aging on martensitic transformations in Ni-rich NiTi shape memory alloys", Smart Mater. Struct., 14, S186 doi:10.1088/0964-1726/14/5/002.
- Indirli, M. and Castellano, M.G. (2008), "Shape memory alloy devices for the structural improvement of masonry heritage structures", Int. J. Architect Herit., 2(2), 93-119. https://doi.org/10.1080/15583050701636258
- Isalgue, A., Torra, V., Yawny, A. and Lovey, F.C. (2008), "Metastable effects on martensitic transformation in SMA Part VI. The Clausius-Clapeyron relationship", J. Therm. Anal Calorim., 91(3), 991-998. https://doi.org/10.1007/s10973-007-8604-8
- Otsuka, K. and Wayman, C.M. (Eds.) (1998), Shape memory materials, Cambridge University Press, UK.
- Lovey, F.C. and Torra, V. (1999), "Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu-Zn-Al", Prog. Mater. Sci., 44(3) 189-289.
- Ma, H. and Cho, C. (2008), "Feasibility study on a superelastic SMA damper with re-centring capability", Mater. Sci. Eng., A473, 290-296.
- Otsuka, K. and Wayman C.M. (1998), Shape memory materials, Cambridge University Press, Cambridge, UK.
- Song, G., Ma, N. and Li, H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
- Speicher, M.S., DesRoches, R. and Leon, R.T. (2011), "Experimental results of a NiTi shape memory alloy (SMA)-based recentering beam-column connection", Eng. Struct., 33(9), 2448-2457. https://doi.org/10.1016/j.engstruct.2011.04.018
- Torra, V., Auguet, C., Carreras, G., Dieng, L., Lovey, F.C. and Terriault, P. (2012a), "The SMA: an effective damper in civil engineering that smoothes oscillations", Mater. Sci. Forum., 706-709, 2020-2025. https://doi.org/10.4028/www.scientific.net/MSF.706-709.2020
- Torra, V., Auguet, C., Isalgue, A., Lovey, F.C. and Terriault, P. (2012b), "The SMA was a tool for damping the induced oscillations in civil structures. Application to earthquake mitigation in family homes and to stayed cables for bridges", Proceedings of the ICOMAT, Osaka, Japan.
- Torra, V., Auguet, C., Isalgue, A., Carreras, G., Terriault, P. and Lovey, F.C. (2013a), "Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: a mesoscopic and macroscopic experimental analysis with numerical simulations", Eng. Struct., 49, 43-57. https://doi.org/10.1016/j.engstruct.2012.11.011
- Torra, V., Isalgue, A., Auguet, C.,, Casciati, F., Casciati, S. and Terriault, P. (2013b), "SMA dampers for cable vibration: an available solution for oscillation mitigation of stayed cables in bridges", Adv. Sci. Technol., 78, 92-102.
- Torra, V., Isalgue, A., Auguet, C., Carreras, G., Lovey, F.C. and Terriault, P. (2013c), "Damping in civil engineering using SMA. Part II. particular properties of NiTi for damping of stayed cables in bridges", Can. Metall. Quart., 52, 81-89. https://doi.org/10.1179/1879139512Y.0000000036
- Torra, V., Auguet, C., Isalgue, A., Carreras, G. and Lovey, F.C. (2013d), "Metastable effects on martensitic transformation in SMA Part IX. Static aging for morphing by temperature and stress", J Therm. Anal Calorim., 112(2), 777-780 https://doi.org/10.1007/s10973-012-2585-y
- Torra, V., Isalgue, A., Martorell, F., Lovey, FC. and Terriault, P. (2010), "Damping in civil engineering using SMA. part I. particular properties of CuAlBe for damping of family houses", Can. Metall. Quart., 49(2), 179-190 https://doi.org/10.1179/cmq.2010.49.2.179
- Torra, V., Isalgue, A., Martorell, F., Terriault, P. and Lovey, F.C. (2007), "Built in dampers for family homes via SMA: An ANSYS computation scheme based on mesoscopic and microscopic experimental analyses", Eng. Struct., 29(8), 1889-1902. https://doi.org/10.1016/j.engstruct.2006.08.028
피인용 문헌
- Functional Fatigue of Polycrystalline Cu-Al-Mn Superelastic Alloy Bars under Cyclic Tension vol.28, pp.5, 2016, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001417
- Civil Engineering Applications: Specific Properties of NiTi Thick Wires and Their Damping Capabilities, A Review vol.3, pp.4, 2017, https://doi.org/10.1007/s40830-017-0135-y
- Metastable effects on martensitic transformation in SMAs vol.128, pp.1, 2017, https://doi.org/10.1007/s10973-016-5886-8
- Thermally modulated shape memory alloy friction pendulum (tmSMA-FP) for substantial near-fault earthquake structure protection vol.24, pp.11, 2017, https://doi.org/10.1002/stc.2021
- Straining of Metastable Austenite as a Way to Improve NiTi Alloy Functional Properties vol.2, 2015, https://doi.org/10.1016/j.matpr.2015.07.441
- Thermo-Mechanical Properties of an NiTi-Shape Memory Alloy after Dynamic Loading vol.128, pp.4, 2015, https://doi.org/10.12693/APhysPolA.128.592
- Local effects induced by dynamic load self-heating in NiTi wires of shape memory alloys 2017, https://doi.org/10.1002/stc.2134
- The state of the art in structural health monitoring of cable-stayed bridges vol.6, pp.1, 2016, https://doi.org/10.1007/s13349-015-0115-x
- Seismic behavior of self-centering reinforced concrete wall enabled by superelastic shape memory alloy bars vol.16, pp.1, 2018, https://doi.org/10.1007/s10518-017-0213-8
- Long-time storage effects on shape memory alloy wires 2017, https://doi.org/10.1007/s00707-017-1993-2
- Equivalent linear elastic-viscous model of shape memory alloy for isolated structures vol.99, 2016, https://doi.org/10.1016/j.advengsoft.2016.04.005
- Cables interconnected with tuned inerter damper for vibration mitigation vol.151, 2017, https://doi.org/10.1016/j.engstruct.2017.08.009
- Investigation on the fatigue performance of Ni-Ti thin wires vol.24, pp.1, 2017, https://doi.org/10.1002/stc.1855
- Characterization of superelastic shape memory alloy fiber-reinforced polymer composites under tensile cyclic loading vol.111, 2016, https://doi.org/10.1016/j.matdes.2016.09.034
- Shape Memory Alloy Cables for Structural Applications vol.28, pp.4, 2016, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001457
- Nonlinear dynamics of SMA-fiber-reinforced composite beams subjected to a primary/secondary-resonance excitation vol.226, pp.2, 2015, https://doi.org/10.1007/s00707-014-1191-4
- Damping and frequency of a model cable attached with a pre-tensioned shape memory alloy wire: Experiment and analysis vol.25, pp.2, 2018, https://doi.org/10.1002/stc.2106
- Finite element analysis of hydrogen effects on superelastic NiTi shape memory alloys: Orthodontic application vol.29, pp.16, 2018, https://doi.org/10.1177/1045389X18754356
- Experimental validation of shape memory material model implemented in commercial finite element software under multiaxial loading vol.29, pp.14, 2018, https://doi.org/10.1177/1045389X18781047
- Experimental investigations on seismic control of cable-stayed bridges using shape memory alloy self-centering dampers vol.25, pp.7, 2018, https://doi.org/10.1002/stc.2180
- Life-cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy–based hybrid damper pp.2048-4011, 2018, https://doi.org/10.1177/1369433218773487
- A multi-modal adaptive tuned mass damper based on shape memory alloys vol.30, pp.4, 2019, https://doi.org/10.1177/1045389X18818388
- Seismic behavior of properly designed CBFs equipped with NiTi SMA braces vol.21, pp.4, 2014, https://doi.org/10.12989/sss.2018.21.4.479
- Temperature effect on seismic performance of CBFs equipped with SMA braces vol.22, pp.5, 2018, https://doi.org/10.12989/sss.2018.22.5.495
- Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires vol.23, pp.4, 2019, https://doi.org/10.12989/sss.2019.23.4.337
- Seismic vibration control of an innovative self-centering damper using confined SMA core vol.25, pp.2, 2014, https://doi.org/10.12989/sss.2020.25.2.241
- Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials vol.26, pp.1, 2014, https://doi.org/10.12989/sss.2020.26.1.089
- Thermomechanical and electrical response of a superelastic NiTi shape memory alloy cable vol.31, pp.19, 2014, https://doi.org/10.1177/1045389x20943952
- Cyclic behavior of superelastic SMA cable and its application in an innovative self-centering BRB vol.30, pp.9, 2014, https://doi.org/10.1088/1361-665x/ac1907