References
- Borzi, A. and Schulz, V. (2011), Computational optimization of systems governed by partial differential equations, SIAM, Philadelphia, (ISBN 978-1-611972-04-7)
- Calberg, K., Bou, Mosleh and Farhat, C. (2011), "Efficient non-linear model reduction via a least squares Petrov-Galerkin projection and compressive tensor approximations", Int. J. Numer. Meth. Eng., 86(2),155-181. https://doi.org/10.1002/nme.3050
- Casciati, F., Casciati, S., Faravelli L. and Franchinotti, M. (2012), "Model order reduction vs. structural control", Proceedings of the 5th EACS, Genoa, July.
- Casciati, S. (2008), "Stiffness identification and damage localization via differential evolution algorithms ", Struct. Control Health Monit., 15(3), 463-449.
- Casciati, S, and Borja, R.L. (2004), "Dynamic FE analysis of south memnon colossus including 3D soil-foundation-structure interaction" , Comput. Struct., 82(20-21), 1719-1736. https://doi.org/10.1016/j.compstruc.2004.02.026
- Casciati, S. and Faravelli, L. (2014), "Quantity vs. quality in the Model Order Reduction (MOR) of a linear system", Smart Struct. Syst.,13 (1), 99-109. https://doi.org/10.12989/sss.2014.13.1.099
- MSC (2013), Marc 2013 User's Guide , http://www.mscsoftware.com.
- Ohtori, Y., Christenson, R.E. and Spencer, B.F. (2004), "Benchmark control problems for seismically excited nonlinear buildings", J. Eng. Mech. - ASCE, 130, 366-385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366)
- Papadimitriou C. (2004), "Optimal sensor placement methodology for parametric identification of structural systems", J. Sound Vib., 278(4), 923-947 https://doi.org/10.1016/j.jsv.2003.10.063
- Schilders, W.H.A., van der Vorst, H.A. and Rommes, J. (2008), Model Order Reduction : Theory, Research Aspects and Applications, Springer, Berlin.
- Yang , X.S. (2008), Nature-inspired metaheuristic algorithms, Luniver Press.
Cited by
- Bayesian dynamic linear models for structural health monitoring vol.24, pp.12, 2017, https://doi.org/10.1002/stc.2035
- Optimal sensor placement methodology for uncertainty reduction in the assessment of structural condition vol.24, pp.6, 2017, https://doi.org/10.1002/stc.1927
- Low-cost simulation using model order reduction in structural health monitoring: Application of balanced proper orthogonal decomposition vol.24, pp.11, 2017, https://doi.org/10.1002/stc.1994
- Dynamic transient analysis of systems with material nonlinearity: a model order reduction approach vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.001
- Building structural health monitoring using dense and sparse topology wireless sensor network vol.16, pp.4, 2015, https://doi.org/10.12989/sss.2015.16.4.607
- Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm vol.22, pp.4, 2015, https://doi.org/10.1002/stc.1707
- Wireless structural control using multi-step TDMA communication patterning bandwidth allocation vol.24, pp.12, 2017, https://doi.org/10.1002/stc.2025
- Optimum design of tuned mass damper floor system integrated into bending-shear type building based on H∞, H2, and stability maximization criteria vol.22, pp.6, 2015, https://doi.org/10.1002/stc.1725
- Optimal sensor placement for damage detection of bridges subject to ship collision vol.24, pp.9, 2017, https://doi.org/10.1002/stc.1963
- -means clustering: Application in health monitoring of plate using Lamb wave propagation and impedance method vol.25, pp.9, 2018, https://doi.org/10.1002/stc.2211
- A parametric reduced-order model using substructural mode selections and interpolation vol.212, pp.None, 2014, https://doi.org/10.1016/j.compstruc.2018.10.018