References
- Bandyopadhyay, P.R. (2005), "Trends in biorobotic autonomous undersea vehicles", IEEE J. Oceanic Eng., 30(1), 109-139. https://doi.org/10.1109/JOE.2005.843748
- Bellingham, J.G. and Rajan, K. (2007), "Robotics in remote and hostile environments", Science, 318(5853), 1098-1102. https://doi.org/10.1126/science.1146230
- Boger, D. and Dreyer, J. (2006), "Prediction of hydrodynamic forces and moments for underwater vehicles using overset grids", Proceedings of the 44th AIAA aerospace sciences meeting, Reno, Nevada.
- Bovio, E., Cecchi, D. and Baralli, F. (2006), "Autonomous underwater vehicles for scientific and naval operations", Annu. Revi. Control, 30(2), 117-130. https://doi.org/10.1016/j.arcontrol.2006.08.003
- Carrica, P.M., Ismail, F., Hyman, M., Bhushan, S. and Stern, F. (2013), "Turn and zigzag maneuvers of a surface combatant using a URANS approach with dynamic overset grids", J. Marine Sci. Technol., 18(2) ,166-181. https://doi.org/10.1007/s00773-012-0196-8
- Chase, N. and Carrica P.M. (2013), "Submarine propeller computations and application to self-propulsion of DARPA Suboff", Ocean Eng., 60, 68-80. https://doi.org/10.1016/j.oceaneng.2012.12.029
- Chislett, M.S. and Strom-Tejsen, J. (1965), Planar motion mechanism tests and full-scale steering and manoeuvring predictions for a mariner class vessel, Technical Report Hydro-and Aerodynamics Laboratory, Lyngby, Denmark.
- Desa, E., Madhan, R. and Maurya, P. (2006), "Potential of autonomous underwater vehicles as new generation ocean data platforms", Current science, 90(9), 1202-1209.
- Kandasamy, M., Ooi, S.K., Carrica, P.M., Stern, F., Campana, E.F., Peri, D., Osborne, P., Cote, J., Macdonald, N. and de Waal, N. (2011), "CFD validation studies for a high-speed foil-assisted semi-planing catamaran", J. Marine Sci. Technol., 16(2), 157-167. https://doi.org/10.1007/s00773-011-0120-7
- Paterson, E.G., Wilson, R.V. and Stern, F. (2003), General-purpose parallel unsteady rans ship hydrodynamics code: CFDSHIP-IOWA, IIHR Technical Report No. 432.
- Petersson, N.A. (1999), "An algorithm for assembling overlapping grid systems", SIAM J. Sci. Comput., 20(6),1995-2022. https://doi.org/10.1137/S1064827597292917
- Rogers, S.E. (2012), PEGASUS user's guide, http://people.nas.nasa.gov/-rogers/pegasus/uguide.html.
- Rogers, S.E., Suhs, N.E. and Dietz, W.E. (2003), "PEGASUS 5: An automated preprocessor for overset-grid computational fluid dynamics", AIAA J., 41(6), 25-51.
- Sakamoto, N., Carrica, P.M. and Stern, F. (2012), "URANS and DES simulations of static and dynamic maneuvering for surface combatant: part 1. Verification and validation for forces, moment and hydrodynamic derivatives", J. Marine Sci. Technol., 17(4), 422-445. https://doi.org/10.1007/s00773-012-0178-x
- Sakamoto, N., Carrica, P.M. and Stern, F. (2012), "URANS simulations of static and dynamic maneuvering for surface combatant: part 2. Analysis and validation for local flow characteristics", J. Marine Sci. Technol., 17(4), 446-468. https://doi.org/10.1007/s00773-012-0184-z
- Schawarz, T., Spiering, F. and Kroll, N. (2010), "Grid coupling by means of Chimera interpolation techniques", Proceedings of the 2nd Symposium of Simulation of Wing and Nacelle Stall, Braunschweig, Germany.
- Simonsen, C.D., Otzen, J.F., Joncquez, S. and Stern, F. (2013), "EFD and CFD for KCS heaving and pitching in regular head waves", J. Marine Sci. Technol., (in press).
- Tahara, Y., Wilson, R.V., Carrica, P.M. and Stern, F. (2006), "RANS simulation of a container ship using a single-phase level-set method with overset grids and the prognosis for extension to a self-propulsion simulator", J. Marine Sci. Technol., 11(4), 209-228. https://doi.org/10.1007/s00773-006-0231-8
- Wang, Q., Ge, T., Wu, C. and Yan H. (2012), "Design of the HUV based on the airplane's principles", Ocean Eng., 30(2),143-149 (in Chinese).
- Yan, H. (2012), Investigation on design, navigation and motion performance of a Heavier-than-water AUV, Ph. D. Dissertation, Shanghai Jiaotong University, Shanghai (in Chinese).
Cited by
- Multiple objective multidisciplinary design optimization of heavier-than-water underwater vehicle using CFD and approximation model vol.22, pp.1, 2017, https://doi.org/10.1007/s00773-016-0399-5