DOI QR코드

DOI QR Code

Comparison of the Properties of Poly(lactic acid) Nanocomposites with Various Fillers: Organoclay, Functionalized Graphene, or Organoclay/Functionalized Graphene Complex

유기화 점토, 작용기화 그래핀 및 유기화 점토/작용기화 그래핀 복합체 등의 필러를 사용한 Poly(lactic acid) 나노 복합체의 물성 비교

  • Kwon, Kidae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
  • 권기대 (금오공과대학교 에너지융합소재공학부) ;
  • 장진해 (금오공과대학교 에너지융합소재공학부)
  • Received : 2013.11.01
  • Accepted : 2013.11.29
  • Published : 2014.03.25

Abstract

Poly(lactic acid)(PLA) nanocomposites containing various nanofillers were synthesized using the solution intercalation method. Organically modified bentonite clay (NSE), octadecylamine-graphene oxide (ODA-GO), and an NSE/ODA-GO complex were utilized as nanofillers in the fabrication of PLA hybrid films. PLA hybrid films with varying nanofiller contents in the range of 0-10 wt% were examined and compared in terms of their thermomechanical properties, morphologies, and oxygen permeabilities. Transmission electron microscopy (TEM) confirmed that most of the NSE and ODA-GO nanofillers were dispersed homogeneously throughout the PLA matrix on the nanoscale, although some agglomerate NSE/ODA-GO complex particles were also formed. Among the three nanofillers for PLA hybrid films, the NSE/ODA-GO complex showed the best improvement in film thermal stability. In contrast, NSE and ODA-GO exhibited the best improvement in tensile mechanical properties and oxygen barrier properties of the PLA hybrid films, respectively.

용액 삽입(solution intercalation) 방법을 이용하여 다양한 나노 필러들을 포함하는 poly(lactic acid)(PLA) 나노 복합체를 합성하였다. 유기화 반응 처리된 벤토나이트 점토(NSE), 옥타데실아민(ODA)을 산화 그래핀(GO)에 반응한 ODA-GO, 그리고 유기화 처리된 벤토나이트와 ODA-GO의 복합체인 NSE/ODA-GO 등이 PLA 복합체 필름을 얻기 위한 나노 필러로 각각 사용되었다. 3가지 나노 필러들은 0-10 wt%의 함량으로 사용되었고 PLA 복합체 필름들의 열적-기계적 성질, 모폴로지, 산소 투과도 결과들을 서로 비교하였다. 투과전자현미경을 통하여 얻은 결과에서 NSE/ODA-GO 복합체는 약간 뭉쳐있었지만, NSE나 ODA-GO 등의 필러들은 PLA 매트릭스에 분산이 매우 양호하였음을 알 수 있었다. PLA 복합체 합성을 위해 사용된 3가지 필러 중에서, 열적 안정성에서는 NSE/ODA-GO가 가장 효과적이었지만, 기계적 인장 성질이나 산소 차단성에서는 각각 NSE와 ODA-GO가 가장 우수하였다.

Keywords

References

  1. N. Ogata, S. Kawakage, and T. Ogihara, J. Appl. Polym. Sci., 66, 573 (1999).
  2. K. E. Strawhecker and E. Manias, Chem. Mater., 12, 2943 (2000). https://doi.org/10.1021/cm000506g
  3. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. C. Chung, Chem. Mater., 13, 3516 (2001). https://doi.org/10.1021/cm0110627
  4. I. K. Kim and J. H. Yeum, Polymer(Korea), 35, 553 (2011).
  5. J. J. Cha and J. H. Im, Polymer(Korea), 37, 507 (2013).
  6. Y. Fukushima and S. Inagaki, Incl. Phenom., 5, 473 (1987). https://doi.org/10.1007/BF00664105
  7. E. P. Giannelis, Adv. Mater., 8, 29 (1996). https://doi.org/10.1002/adma.19960080104
  8. T. Srikhirin, A. Moet, and J. B. Lando, Polym. Adv. Tech., 9, 491 (1998). https://doi.org/10.1002/(SICI)1099-1581(199808)9:8<491::AID-PAT794>3.0.CO;2-0
  9. Y. S. Chol and I. J. Chung, Korean Chem. Eng., 46, 23, (2008).
  10. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  11. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008). https://doi.org/10.1021/nl802558y
  12. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008). https://doi.org/10.1021/nl0731872
  13. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nature Nanotechnol., 3, 491 (2008). https://doi.org/10.1038/nnano.2008.199
  14. I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Nano Lett., 8, 4283 (2008). https://doi.org/10.1021/nl8019938
  15. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  16. S. Ansari and E. P. Giannelis, J. Polym. Sci., Part B: Polym. Phys., 47, 888 (2009). https://doi.org/10.1002/polb.21695
  17. A. V. Raghu, Y. R. Lee, and H. M. Jeong, Macromol. Chem. Phys., 209, 2487 (2008). https://doi.org/10.1002/macp.200800395
  18. D. Cai and M. Song, J. Mater. Chem., 20, 7906 (2010). https://doi.org/10.1039/c0jm00530d
  19. G. Perego, G. D. Cella, and C. Bastioli, J. Appl. Polym. Sci., 195, 1649 (1996).
  20. R. G. Sinclair, J. Macromol. Sci. Pure Appl. Chem., 33, 585 (1996). https://doi.org/10.1080/10601329608010880
  21. R. A. Jain, Biomaterials, 21, 2475 (2000). https://doi.org/10.1016/S0142-9612(00)00115-0
  22. A. G. Mikos, M. D. Lyman, L. E. Freed, and R. Langer, Biomaterials, 15, 55 (1994). https://doi.org/10.1016/0142-9612(94)90197-X
  23. M. S. Taylor, A. U. Daniels, K. P. Andriano, and J. Heller, J. Appl. Biomater., 5, 151 (1994). https://doi.org/10.1002/jab.770050208
  24. T. G. Park, S. Cohen, and R. Langer, Macromolecules, 25, 116, (1992). https://doi.org/10.1021/ma00027a019
  25. H. Urayama, T. Kanamori, and Y. Kimura, Macromol. Mater. Eng., 287, 116 (2002). https://doi.org/10.1002/1439-2054(20020201)287:2<116::AID-MAME116>3.0.CO;2-Z
  26. J.-H. Chang, Y. U. An, and G. S. Sur, J. Polym. Sci., Part B: Polym. Phys., 41, 94 (2003).
  27. J.-H. Chang, Y. U. An, D. H. Cho, and E. P. Giannelis, Polymer, 44, 3715 (2003). https://doi.org/10.1016/S0032-3861(03)00276-3
  28. W. Hummers and R. Offman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  29. J.-H. Chang, S. J. Kim, and S. Im, Polymer, 45, 5171 (2004). https://doi.org/10.1016/j.polymer.2004.05.012
  30. J.-H. Chang, M. K. Mun, and I. C. Lee, J. Appl. Polym. Sci., 98, 2009 (2005). https://doi.org/10.1002/app.22382
  31. G. Galgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001). https://doi.org/10.1021/ma000565f
  32. A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci., 87, 1329 (2003). https://doi.org/10.1002/app.11884
  33. T. K. Chen, Y. I. Tien, and K. H. Wei, Polymer, 41, 1345 (2000). https://doi.org/10.1016/S0032-3861(99)00280-3
  34. T. D. Fornes, P. J. Yoon, D. Lunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002). https://doi.org/10.1016/S0032-3861(02)00400-7
  35. H. R. Frischer, L. H. Gielgens, and T. P. Koster, M. Acta Polym., 50, 122 (1999). https://doi.org/10.1002/(SICI)1521-4044(19990401)50:4<122::AID-APOL122>3.0.CO;2-X
  36. K. M. Varlot, E. Reynaud, G. Virier, and J. Varlet, J. Polym. Sci., Part B: Polym. Phys., 40, 272 (2002). https://doi.org/10.1002/polb.10088
  37. R. K. Bharadwaj, Macromolecules, 34, 9189 (2001). https://doi.org/10.1021/ma010780b
  38. D. Jarus, A. Hiltner, and E. Baer, Polymer, 43, 2401 (2002). https://doi.org/10.1016/S0032-3861(01)00790-X
  39. R. A. Zoppi, S. D. Neves, and S. P. Nunes, Polymer, 41, 5461 (2000). https://doi.org/10.1016/S0032-3861(99)00751-X

Cited by

  1. Comparison of Properties of Colorless and Transparent Polyimide Nanocomposites Containing Different Diamine Monomers vol.6, pp.29, 2021, https://doi.org/10.1021/acsomega.1c02285