DOI QR코드

DOI QR Code

제자리 화학중합을 통한 그래핀 옥사이드를 포함하는 전도성 고분자 나노복합체의 제조와 특성 분석

Preparation and Characterization of Conducting Polymer Nanocomposites Including Graphene Oxide via In-situ Chemical Polymerization

  • 정연준 (인제대학교 나노공학부, 고안전차량핵심기술연구소) ;
  • 문병철 (인제대학교 나노공학부, 고안전차량핵심기술연구소) ;
  • 장민채 (인제대학교 나노공학부, 고안전차량핵심기술연구소) ;
  • 김양수 (인제대학교 나노공학부, 고안전차량핵심기술연구소)
  • Jeong, Yeonjun (Department of Nanoscience and Engineering, High Safety Vehicle Core Technology Research Center, Inje University) ;
  • Moon, Byung-Chul (Department of Nanoscience and Engineering, High Safety Vehicle Core Technology Research Center, Inje University) ;
  • Jang, Min-Chae (Department of Nanoscience and Engineering, High Safety Vehicle Core Technology Research Center, Inje University) ;
  • Kim, Yangsoo (Department of Nanoscience and Engineering, High Safety Vehicle Core Technology Research Center, Inje University)
  • 투고 : 2013.09.26
  • 심사 : 2013.11.08
  • 발행 : 2014.03.25

초록

그래핀옥사이드(GO)와 전도성 고분자(PPy, PANI, PEDOT)로 이루어진 나노복합체를 제자리 화학중합을 통하여 제조하였으며, 전도성 고분자의 함량 증가에 따른 특성변화를 분석하였다. GO에 존재하는 반응성 그룹 그리고 GO-poly(4-styrene sulfonic acid)(PSSA) 복합체 및 세 종류 나노복합체에서 고분자의 존재를 확인하였으며, GO와 PSSA 또는 전도성 고분자 사이의 상호작용이 제안되었다. GO-PSS/PEDOT 나노복합체의 경우 PEDOT 함량이 증가함에 따라 라만 스펙트럼의 $I_D/I_G$ 값이 감소하였으며 특성 피크 위치도 크게 변화하였다. GO-PSS/PEDOT 나노복합체의 경우 PEDOT이 GO-PSSA 층을 박리시켜 그들 분자층 사이로 내부 삽입되어 있는 형태를 취하며 GO 또는 GO-PSSA 분자층이 열차단층으로 작용하게 되어 나노복합체는 GO 또는 GO-PSSA보다 열안정성이 향상되었다. 또한 GO-PSSA와 PEDOT 사이에 형성된 균일한 hybridization 모폴로지를 확인하였으며, GO-PSS/PEDOT 나노복합체의 경우 가장 우수한 전기전도성을 보여 주었다.

Nanocomposites including graphene oxide (GO) and conducting polymers (PPy, PANI and PEDOT) were prepared via an in-situ chemical polymerization process, and their characteristic properties depending upon the change of conducting polymer (CP) content were analyzed. A confirmation was made on not only the functional groups formed in GO but also the presence of CP existent in the nanocomposites. The molecular interaction between GO and poly(4-styrene sulfonic acid) (PSSA) or CP in the nanocomposites was proposed. With the increase of PEDOT content in the GOPSS/PEDOT nanocomposite, the estimated value of $I_D/I_G$ regarding the Raman analysis of them was decreased and a major change of their Raman spectra characteristic peaks was observed. In the GO-PSS/PEDOT nanocomposite, PEDOT molecules made an exfoliation of GO-PSSA layers and thus they were intercalated among layers. Such a unique molecular morphology induced the highest electrical conductivity for the GO-PSS/PEDOT nanocomposite among three kinds of nanocomposites prepared in this study. It is also noted that the uniform morphology confirmed in this study helped a thermal stability improvement in the nanocomposite due to the presence of GO or GO-PSSA acting as a thermal barrier.

키워드

참고문헌

  1. T. Lee, T. Yum, B. Park, B. Sharma, H. K. Song, and B. S. Kim, J. Mater. Chem., 22, 21092 (2012). https://doi.org/10.1039/c2jm33111j
  2. T. T. Tung, J. F. Feller, T. Y. Kim, H. Kim, W. S. Yang, and K. S. Suh, J. Polym. Sci., Part A: Polym. Chem., 50, 927 (2012). https://doi.org/10.1002/pola.25847
  3. X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E. S. W. Kong, H. Wei, and Y. Zhang, J. Mater. Chem., 22, 22488 (2012). https://doi.org/10.1039/c2jm34340a
  4. T. Qian, S. Wu, and J. Shen, Chem. Commun., 49, 4610 (2013). https://doi.org/10.1039/c3cc00276d
  5. Z. Q. Zhao, X. Chen, Q. Yang, J. H. Liu, and X. J. Huang, Chem. Commun., 48, 2180 (2012). https://doi.org/10.1039/c1cc16735a
  6. B. Yin, Q. Liu, L. Yang, X. Wu, Z. Liu, Y. Hua, S. Yin, and Y. Chen, J. Nanosci. Nanotechnol., 10, 1934 (2010). https://doi.org/10.1166/jnn.2010.2107
  7. S. H. Domingues, R. V. Salvatierra, M. M. Oliveira, and A. J. G. Zarbin, Chem. Commun., 47, 2592 (2011). https://doi.org/10.1039/c0cc04304d
  8. S. Konwer, R. Boruah, and S. K. Dolui, J. Electronic Mater., 40, 2248 (2011). https://doi.org/10.1007/s11664-011-1749-z
  9. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, ACS Appl. Mater. Interfaces, 2, 821 (2010). https://doi.org/10.1021/am900815k
  10. K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, Chem. Mater., 22, 1392 (2010). https://doi.org/10.1021/cm902876u
  11. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, Electrochem. Commun., 11, 1158 (2009). https://doi.org/10.1016/j.elecom.2009.03.036
  12. H. Bai, K. Sheng, P. Zhang, C. Li, and G. Shi, J. Mater. Chem., 21, 18653 (2011). https://doi.org/10.1039/c1jm13918e
  13. U. Rana and S. Malik, Chem. Commun., 48, 10862 (2012). https://doi.org/10.1039/c2cc36052g
  14. B. Saner, S. A. Gursel, and Y. Yurum, Fuller. Nanotub. Carbon Nanostruct., 21, 233 (2013). https://doi.org/10.1080/1536383X.2011.613536
  15. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006). https://doi.org/10.1039/b512799h
  16. Le K. H. Trang, T. T. Tung, T. Y. Kim, W. S. Yang, H. Kim, and K. S. Suh, Polym. Int., 61, 93 (2012). https://doi.org/10.1002/pi.3152
  17. N. T. Tung, T. V. Khan, M. Jeon, Y. J. Lee, H. Chung, J. H. Bang, and D. Sohn, Macromol. Res., 19, 203 (2011). https://doi.org/10.1007/s13233-011-0216-2
  18. D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, and Y. Ma, J. Power Sources, 196, 5990 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.090
  19. Y. T. Joo, K. H. Jung, M. J. Kim, and Y. Kim, J. Appl. Polym. Sci., 127, 1508 (2013). https://doi.org/10.1002/app.37571
  20. Y. T. Joo, K. H. Jung, and Y. Kim, Polymer(Korea), 35, 395 (2011).
  21. K. Sheng and G. Shi, Synt. Met., 160, 1354 (2010). https://doi.org/10.1016/j.synthmet.2010.03.023
  22. A. Grinou, Y. S. Yun, and H. J. Jin, Macromol. Res., 20, 84 (2012). https://doi.org/10.1007/s13233-012-0002-9
  23. H. K. Jeong, M. H. Jin, K. H. An, and Y. H. Lee, J. Phys. Chem. C, 113, 13060 (2009). https://doi.org/10.1021/jp9026282
  24. Li Q. Xu, Yi L. Liu, K. G. Neoh, E. T. Kang, and G. D. Fu, Macromol. Rapid Commun., 32, 684 (2011). https://doi.org/10.1002/marc.201000765
  25. C. Basavaraja, W. J. Kim, P. X. Thinh, and D. S. Huh, Polym. Compos., 32, 2076 (2011). https://doi.org/10.1002/pc.21237

피인용 문헌

  1. Preparation and Characterization of PEDOT/PSS Hybrid with Graphene Derivative Wrapped by Water-soluble Polymer vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1087