DOI QR코드

DOI QR Code

Identification of Structural Defects in Rail Fastening Systems Using Flexural Wave Propagation

굽힘파 전파 특성을 이용한 레일체결장치의 구조 결함 진단

  • Received : 2014.02.04
  • Accepted : 2014.02.24
  • Published : 2014.02.28

Abstract

An experimental method based on flexural wave propagation is proposed for identification of structural damage in rail fastening systems. The vibration of a rail clamped and supported by viscoelastic pads is significantly influenced by dynamic support properties. Formation of a defect in the rail fastening system induces changes in the flexural wave propagation characteristics owning to the discontinuity in the structural properties. In this study, frequency-dependent support stiffness was measured to monitor this change by a transfer function method. The sensitivity of wave propagation on the defect was measured from the potential energy stored in a continuously supported rail. Further, the damage index was defined as a correlation coefficient between the change in the support stiffness and the sensitivity. The defect location was identified from the calculated damage index.

굽힘파 전파 특성을 이용하여 지지강성을 도출하고 이를 이용한 레일체결장치의 결함 검출 시험법을 제안하였다. 점탄성 패드로 지지되고 체결장치로 고정된 레일의 진동 응답은 주파수에 따라 지지단 동특성에 크게 영향을 받는다. 체결장치에 결함이 발생할 경우에는 구조적인 불연속성으로 인해 굽힘 파동의 전파 특성이 변화하게 된다. 이러한 변화를 감지하기 위해서 전달함수법을 이용해 주파수에 따라 변화하는 레일 지지단 동특성을 측정하였다. 연속 스프링으로 지지된 레일 응답으로부터 예측한 레일의 보존에너지를 이용해 결함에 대한 파동 전파의 민감도를 해석하였다. 민감도 해석 결과와 동적지지강성 변화를 측정하여 손상지수를 계산하고 결함 위치를 추정하였다.

Keywords

References

  1. A. S. J. Swamidas and Y. Chen, "Monitoring crack growth through change of modal parameters," Journal of Sound and Vibration, Vol. 186, No. 2, pp. 325-343 (1995) https://doi.org/10.1006/jsvi.1995.0452
  2. S. S. Kessler, S. M. Spearing and C. Soutis, "Damage detection in composite materials using Lamb wave methods," Smart Materials and Structures, Vol. 11, pp. 269-278 (2002) https://doi.org/10.1088/0964-1726/11/2/310
  3. C. R. Farrar and D. A. Jauregui, "Comparative study of damage identification algorithms applied to a bridge: I. Experiment," Smart Materials and Structures, Vol. 7, pp. 704-719 (1998) https://doi.org/10.1088/0964-1726/7/5/013
  4. R. Clark, "Rail flaw detection: overview and needs for future developments," NDT&E International, Vol. 37, pp. 111-118 (2004) https://doi.org/10.1016/j.ndteint.2003.06.002
  5. J. H. Kim, S. Y. Han, N. H. Lim and Y. J. Kang "An experimental study of fastening system on CWR(continuous welded rail) track stability," Proceedings of Korean Society for Railway, pp. 23-30 (2007)
  6. D. W. Lee, J. Y. Choi, C. H. Baik and Y. G. Park, "Influence of initial clamping force of tension clamp on performance of elastic rail fastening system," Journal of the Korean Society of Civil Engineers, Vol. 33, No. 3, pp. 1243-1251 (2013) https://doi.org/10.12652/Ksce.2013.33.3.1243
  7. J. Park, "Identification of damage in beam structures using flexural wave propagation characteristics," Journal of Sound and Vibration, Vol. 318, No. 4-5, pp. 820-829 (2008) https://doi.org/10.1016/j.jsv.2008.05.008
  8. J. Park, "Transfer function methods to measure dynamic mechanical properties of complex structures," Journal of Sound and Vibration, Vol. 288, No. 1-2, pp. 57-79 (2005) https://doi.org/10.1016/j.jsv.2004.12.019
  9. D. Kim, S. Hong J. Jang and J. Park, "Simultaneous determination of position and mass in the cantilever sensor using transfer function method," Applied Physics Letters, Vol. 103, 033108 (2013) https://doi.org/10.1063/1.4813839

Cited by

  1. Non-contact Local Fault Detection of Railroad Track using MFL Technology vol.14, pp.5, 2014, https://doi.org/10.9798/KOSHAM.2014.14.5.275
  2. Study on MFL Technology for Defect Detection of Railroad Track Under Speed-up Condition vol.18, pp.5, 2015, https://doi.org/10.7782/JKSR.2015.18.5.401