DOI QR코드

DOI QR Code

Automatic analysis of thin-walled laminated composite sections

  • Prokic, A. (Faculty of Civil Engineering, University of Novi Sad) ;
  • Lukic, D. (Faculty of Civil Engineering, University of Novi Sad) ;
  • Ladjinovic, Dj. (Faculty of Tehnical Sciences, University of Novi Sad)
  • Received : 2012.06.09
  • Accepted : 2013.10.30
  • Published : 2014.03.25

Abstract

In this paper a computer program is developed for the determination of geometrical and material properties of composite thin-walled beams with arbitrary open cross-section and any arbitrary laminate stacking sequence. Theory of thin-walled composite beams is based on assumptions consistent with the Vlasov's beam theory and classical lamination theory. The program is written in Fortran 77. Some numerical examples are given, with complete information about input and output.

Keywords

References

  1. Banerjee, J.R. (1998), "Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix method", Comput. Struct., 69(2), 197-208. https://doi.org/10.1016/S0045-7949(98)00114-X
  2. Banerjee, J.R. and Su, H. (2006), "Dynamic stiffness formulation and free vibration analysis of a spinning composite beam", Comput. Struct., 84(19-20), 1208-1214. https://doi.org/10.1016/j.compstruc.2006.01.023
  3. Cardoso, B.J. and Valido, A.J. (2011), "Optimal design of composite laminated thin-walled beams", Comput. Struct., 89(11-12), 1069-1076 https://doi.org/10.1016/j.compstruc.2010.12.009
  4. Cardoso, B.J., Benedito, N.M. and Valido, A.J. (2009), "Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation", Thin-Wall. Struct., 47(11-12), 1363-1372. https://doi.org/10.1016/j.tws.2009.03.002
  5. Chen, H.H. and Hsiao, K.M. (2007), "Coupled axial-torsional vibration of thin-walled Z-section beam induced by boundary conditions", Thin-Wall. Struct., 45(6), 573-583. https://doi.org/10.1016/j.tws.2007.05.001
  6. Jones, R.M. (1975), Mechanics of Composite Materials, Hemisphere Publishing Corporation, New York.
  7. Kim, N.I., Shin, D.K. and Kim, M.Y. (2007), "Improved flexural-torsional stability analysis of thin-walled composite beam and exact stiffness matrix", Int. J. Mech. Sci., 49(8), 950-969. https://doi.org/10.1016/j.ijmecsci.2007.01.007
  8. Kim, N.I., Shin, D.K. and Park, Y.S. (2008), "Dynamic stiffness matrix of thin-walled composite I beam with symmetric and arbitrary laminations", J. Sound Vib., 318(1-2), 364-388. https://doi.org/10.1016/j.jsv.2008.04.006
  9. Lee, J. (2001), "Center of gravity and shear center of thin-walled open-section composite beams", Compos. Struct., 52(2), 255-260. https://doi.org/10.1016/S0263-8223(00)00177-X
  10. Machado, S.P. and Cortinez, V.H. (2005), "Non-linear model for stability of thin-walled composite beams with shear deformation", Thin-Wall. Struct., 43(10), 1615-1645. https://doi.org/10.1016/j.tws.2005.06.008
  11. Machado, S.P., Filipich, C.P. and Cortinez, V.H. (2007), "Parametric vibration of thin-walled composite beams with shear deformation", J. Sound Vib., 305(4-5), 563-581. https://doi.org/10.1016/j.jsv.2007.03.092
  12. Murray, N. (1984), Introduction to the Theory of Thin-Walled Structures, Claredon Press.
  13. Piovan, M.T. and Cortinez, V.H. (2007), "Mechanics of shear deformable thin-walled beams made of composite materials", Thin-Wall. Struct., 45(1), 37-62. https://doi.org/10.1016/j.tws.2006.12.001
  14. Prokic, A. (1996), "New warping function for thin-walled beams. II: Finite element method and applications", J. Struct. Eng., 122(12), 1443-1453. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1443)
  15. Prokic, A. (1999), "Computer program for determination of geometrical properties of thin-walled beams with open profile", Adv. Eng. Software, 30(2), 109-119. https://doi.org/10.1016/S0965-9978(98)00062-3
  16. Prokic, A. (2000), "Computer program for determination of geometrical properties of thin-walled beams with open-closed section", Comput. Struct., 74(6), 705-715. https://doi.org/10.1016/S0045-7949(99)00076-0
  17. Rajasekaran, S. (2005), "Mechanical properties of thin-walled composite beams of generic open and closed sections", Struct. Eng. Mech., Int. J., 21(5), 591-620. https://doi.org/10.12989/sem.2005.21.5.591
  18. Rajasekaran, S. (2005), "Optimal laminate sequence of non-prismatic thin-walled composite spatial members of generic section", Compos. Struct., 70(2), 200-211. https://doi.org/10.1016/j.compstruct.2004.08.027
  19. Sapountzakis, E.J. and Mokos, V.G. (2007), "3-D beam element of composite cross section including warping and shear deformation effects", Comput. Struct., 85(1-2), 102-116. https://doi.org/10.1016/j.compstruc.2006.09.003
  20. Sapountzakis, E.J. and Tsiatas, G.C. (2007), "Flexural-torsional buckling and vibration analysis of composite beams", Comput. Mater. Con., 6(2), 103-115.
  21. Vo, T.P. and Lee, J. (2009), "On sixfold coupled buckling of thin-walled composite beams", Compos. Struct., 90(3), 295-303. https://doi.org/10.1016/j.compstruct.2009.03.008
  22. Vo, T.P., Lee, J., Lee, K. and Ahn, N. (2011), "Vibration analysis of thin-walled composite beam with I-shaped cross-sections", Compos. Struct., 93(2), 812-820. https://doi.org/10.1016/j.compstruct.2010.08.001

Cited by

  1. Torsional flexural steady state response of monosymmetric thin-walled beams under harmonic loads vol.52, pp.4, 2014, https://doi.org/10.12989/sem.2014.52.4.787
  2. Modeling and simulation of partially delaminated composite beams vol.18, pp.5, 2015, https://doi.org/10.12989/scs.2015.18.5.1119
  3. Bending behavior of SWCNT reinforced composite plates vol.24, pp.5, 2014, https://doi.org/10.12989/scs.2017.24.5.537
  4. Semi-analytical solution of horizontally composite curved I-beam with partial slip vol.27, pp.1, 2014, https://doi.org/10.12989/scs.2018.27.1.001