DOI QR코드

DOI QR Code

Photocatalytic Degradation of Methyl tert-Butyl Ether (MTBE): A review

  • Seddigi, Zaki S. (Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University) ;
  • Ahmed, Saleh A. (Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University) ;
  • Ansari, Shahid P. (Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University) ;
  • Yarkandi, Naeema H. (Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University) ;
  • Danish, Ekram (Chemistry Department, Faculty of Science, King Abdulaziz University) ;
  • Oteef, Mohammed D.Y. (Chemistry Department, King Khalid University) ;
  • Cohelan, M. (Research Center for Brewing and Food Quality, Technische Universitat Munshen) ;
  • Ahmed, Shakeel (Center for Refining & Petrochemicals, Research Institute, King Fahd University of Petroleum & Minerals) ;
  • Abulkibash, Abdallah M. (Chemistry Department, King Fahd University of Petroleum & Minerals)
  • 투고 : 2013.07.28
  • 심사 : 2014.01.03
  • 발행 : 2014.03.25

초록

Advanced oxidation processes using UV and catalysts like $TiO_2$ and ZnO have been recently applied for the photocatalytic degradation of MTBE in water. Attempts have been made to replace the UV radiation by the solar spectrum. This review intends to shed more light on the work that has been done so far in this area of research. The information provided will help in crystallizing the ideas required to shift the trend from UV photocatalysis to sunlight photocatalysis. The careful optimization of the reaction parameters and the type of the dopant employed are greatly responsible for any enhancement in the degradation process. The advantage of shifting from UV photocatalysts to visible light photocatalysts can be observed when catalysts like $TiO_2$ and ZnO are doped with suitable metals. Therefore, it is expected that in the near future, the visible light photocatalysis will be the main technique applied for the remediation of water contaminated with MTBE.

키워드

참고문헌

  1. Achten, C., Kolb, A. and Puttmann, W. (2002), "Methyl tert-butyl ether (MTBE) in river and wastewater in Germany", Environ. Sci. Tech., 36(17), 3652-3661. https://doi.org/10.1021/es011492y
  2. Amir, D.Z., Nasser, A., Nir, S. and Mishael, Y.G. (2012), "Removal of methyl tertiary-butyl ether (MTBE) from water by polymer-zeolite composites", Micro. Meso. Mat., 151, 216-222. https://doi.org/10.1016/j.micromeso.2011.10.033
  3. An, Y.-J., Kampbell, D.H. and Cook, M.L. (2002), "Co-Occurrence of MTBE and benzene, toluene, ethylbenzene, and xylene compounds at marinas in large reservoir", J. Environ. Eng., 128(9), 902-906. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:9(902)
  4. Andreozzi, R., Caprio, V., Insola, A., Longo, G. and Tufano, V. (2000), "Photocatalytic oxidation of 4-nitrophenol in aqueous $TiO_{2}$slurries: an experimental validation of literature kinetic models", Chem. Tech. Biotech., 75(2), 131-136. https://doi.org/10.1002/(SICI)1097-4660(200002)75:2<131::AID-JCTB191>3.0.CO;2-F
  5. Anpo, M. and Takeuchi, M. (2006), "The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation", J. Catal., 216(1-2), 505-516.
  6. Arana, J., Alonso, A.P., Rodriguez, J.M.D., Herrera, J.A., Gonzalez, O. and Pena, J.P. (2008), "Comparative study of MTBE photocatalytic degradation with $TiO_{2}$ and Cu-$TiO_{2}$", Appl. Catal. B: Environ., 78(3-4), 355-363. https://doi.org/10.1016/j.apcatb.2007.09.023
  7. Bagal, M.V. and Gogate, P.R. (2013), "Photocatalytic and Sonophotocatalytic degradation of alachlor using different photocatalyst", Adv. Environ. Res., Int. J., 2(4), 261-277. https://doi.org/10.12989/aer.2013.2.4.261
  8. Barreto, R.D., Gray, K.A. and Anders, K. (1995), "Photocatalytic degradation of methyl-tert-butyl ether in $TiO_{2}$ slurries: A proposed reaction scheme", Water Res., 29(5), 1243-1248. https://doi.org/10.1016/0043-1354(94)00278-F
  9. Baus, C., Hung, H.W., Sacher, F., Fleig, M. and Brauch, H.-J. (2005), "MTBE in drinking water production occurrence and efficiency of treatment technologies", Acta Hydro. Hydrobio., 33(2), 118-132. https://doi.org/10.1002/aheh.200300562
  10. Bellardita, M., Addamo, M., Paola, A.D. and Palmisano, L. (2007), "Photocatalytic behaviour of metal-loaded $TiO_{2}$ aqueous dispersions and films", Chem. Phys., 339(1-3), 94-103. https://doi.org/10.1016/j.chemphys.2007.06.003
  11. Bertelli, M. and Selli, E. (2004), "Kinetic analysis on the combined use of photocatalysis, $H_{2}O_{2}$ photolysis, and sonolysis in the degradation of methyl tert-butyl ether", Appl.Catal. B: Environ., 52(3), 205-212. https://doi.org/10.1016/j.apcatb.2004.04.009
  12. Boulamanti, A.K. and Philippopoulos, C.J. (2008), "Photocatalytic degradation of methyl tert-butyl ether in the gas-phase: A kinetic study", J. Hazard. Mat., 160(1), 83-87. https://doi.org/10.1016/j.jhazmat.2008.02.087
  13. Butler, E.C. and Davis, A.P. (1993), "Photocatalytic oxidation in aqueous titanium dioxide suspensions: the influence of dissolved transition metals", J. Photochem. Photobiol. A: Chem., 70(3), 273-283. https://doi.org/10.1016/1010-6030(93)85053-B
  14. Callen, M.S., de la Cruz, M.T., Marinov, S., Murillo, R., Stefanova, M. and Mastral, A.M. (2007), "Flue gas cleaning in power stations by using electron beam technology: Influence on PAH emissions", Fuel Pro. Tech., 88(3), 251-258. https://doi.org/10.1016/j.fuproc.2006.10.006
  15. Cater, S.R., Stefan, M.I., Bolton, J.R. and Safarzadeh-Amiri, A. (2000), "UV/$H_{2}O_{2}$ treatment of methyl tertbutyl ether in contaminated waters", Environ. Sci. Techn., 34(4), 659-662. https://doi.org/10.1021/es9905750
  16. Chakrabarti, S. and Dutta, B.K. (2004), "Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst", J. Hazard. Mat., 112(3), 269-278. https://doi.org/10.1016/j.jhazmat.2004.05.013
  17. Chan, C.-C., Chang, C.-C., Hsu, W.-C., Wang, S.-K. and Lin, J. (2009), "Photocatalytic activities of Pd-loaded mesoporous $TiO_{2}$ thin films", Chem. Eng. J., 152(2-3), 492-497. https://doi.org/10.1016/j.cej.2009.05.012
  18. Chan, M.S.M. and Lynch, R.J. (2003), "Photocatalytic degradation of aqueous methyl-tert-butyl-ether (MTBE) in a supported-catalyst reactor", Environ. Chem. Lett., 1(3), 157-160. https://doi.org/10.1007/s10311-003-0037-4
  19. Chen, X. and Burda, C. (2008), "The electronic origin of the visible-light absorption properties of C-, N- and S-doped $TiO_{2}$ nanomaterials", J. Am. Chem. Soc., 130(15), 5018-5019. https://doi.org/10.1021/ja711023z
  20. Colon, G., Maicu, M., Hidalgo, M.C. and Navio, J.A. (2006), "Cu-doped $TiO_{2}$ systems with improved photocatalytic activity", Appl. Catal. B: Environ., 67(1-2), 41-51. https://doi.org/10.1016/j.apcatb.2006.03.019
  21. Cooper, W.J., Cramer, C.J., Martin, N.H., Mezyk, S.P., O'Shea, K.E. and von Sonntag, C. (2009), "Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE)via advanced oxidation/reductive processes in aqueous solutions", Chem. Rev., 109(3), 1302-1345. https://doi.org/10.1021/cr078024c
  22. Deeb, R.A., Scow, K.M. and Alvarez-Cohen, L. (2000), "Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions", Biodegrad., 11(2-3), 171-186. https://doi.org/10.1023/A:1011113320414
  23. Dijkstra, M.F.J., Buwalda, H., de Jong, A.W.F., Michorius, A., Winkelman, J.G.M. and Beenackers, A.A.C.M. (2001), "Experimental comparison of three reactor designs for photocatalytic water purification", C. Eng. Sci., 56(2), 547-555. https://doi.org/10.1016/S0009-2509(00)00259-1
  24. Ekambaram, S., Iikubo, Y. and Kudo, A., (2007), "Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO", J. Alloys Comp., 433(1-2), 237-240. https://doi.org/10.1016/j.jallcom.2006.06.045
  25. Eslami, A., Nasseri, S., Yadollahi, B., Mesdaghinia, A., Vaezi, F. and Nabizadeh, R. (2009), "Removal of methy tert-butyl ether (MTBE) from contaminated water by photocatalytic process", Iran. J. Pub. Health, 38(2), 18-26.
  26. Eslami, A., Nasseri, S., Yadollahi, B., Mesdaghinia, A., Vaezi, F., Nabizadeh, R. and Nazmara, S. (2008), "Photocatalytic degradation of methyl tert-butyl ether (MTBE) in contaminated water by ZnO nanoparticles", J. Chem. Techn. Biotech., 83(11), 1447-1453. https://doi.org/10.1002/jctb.1919
  27. Esplugas, S., Gimenez, J., Contreras, S., Pascual, E. and Rodriguez, M. (2002), "Comparison of different advanced oxidation processes for phenol degradation", Water Res., 36(4), 1034-1042. https://doi.org/10.1016/S0043-1354(01)00301-3
  28. Fayolle, F., Vandecasteele, J.-P. and Monot, F. (2001), "Microbial degradation and fate in the environment of methyl tert-butyl ether and related fuel oxygenates", Appl. Microbio. Biotech., 56(3-4), 339-349. https://doi.org/10.1007/s002530100647
  29. Fischer, A., Müller, M. and Klasmeier, J. (2003), "Determination of Henry's law constant for methyl tert-butyl ether (MTBE) at groundwater temperatures", Chemosphere, 54(6), 689-694.
  30. Fitzgerald, C.B., Venkatesan, M., Lunney, J.G., Dorneles, L.S. and Coey, J.M.D. (2005), "Cobalt doped ZnO-a room temperature dilute magnetic semiconductor", Appl. Surf. Sci., 247(1-4), 493-496. https://doi.org/10.1016/j.apsusc.2005.01.043
  31. Fujishima, A. and Honda, K. (1972), "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238(5358), 37-38. https://doi.org/10.1038/238037a0
  32. Fujishima, A., Rao, T.N. and Tryk, D.A. (2000), "Titanium dioxide photocatalysis", J. Photochem. Photobiol. C: Photochem. Reviews, 1(1), 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
  33. Gerischer, H. and Heller, A. (1991), "The role of oxygen in photooxidation of organic molecules on semiconductor particles", J. Phy. Chem., 95(13), 5261-5267. https://doi.org/10.1021/j100166a063
  34. Gogate, P.R. and Pandit, A.B. (2004), "A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions", Adv. Environ. Res., 8(3-4), 501-551. https://doi.org/10.1016/S1093-0191(03)00032-7
  35. Gomez, C.M., Angel, G.D., Tzompantzi, F., Gomez, R. and Torres-Martinez, L.M. (2012), "Photocatalytic degradation of p-cresol on Pt/${\gamma}$$Al_{2}O_{3}$-$TiO_{2}$ mixed oxides: Effect of oxidizing and reducing pre-treatments", J. Photo. Photobio. A: Chem., 236, 21-25. https://doi.org/10.1016/j.jphotochem.2012.03.016
  36. Gopal, N.O., Lo, H.H. and Ke, S.C. (2008), "Chemical state and environment of boron dopant in B,N-Co-doped anatase $TiO_{2}$ nanoparticles: An avenue for probing diamagnetic dopants in $TiO_{2}$ by electron paramagnetic resonance spectroscopy", J. Am. Chem. Soc., 130, 2760-2761. https://doi.org/10.1021/ja711424d
  37. Guillard, C., Charton, N. and Pichat, P. (2003), "Degradation mechanism of t-butyl methyl ether (MTBE) in atmospheric droplets", Chemosphere, 53(5), 469-477. https://doi.org/10.1016/S0045-6535(03)00547-2
  38. Hariharan, C. (2006), "Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited", Appl. Catal., 304, 55-61. https://doi.org/10.1016/j.apcata.2006.02.020
  39. Herrmann, J.-M. (1999), "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants", Catal. Today, 53(1), 115-129. https://doi.org/10.1016/S0920-5861(99)00107-8
  40. Ho, W. and Yu, J.C. (2006), "Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/$TiO_{2}$ nanoparticles", J. Molecul. Catal. A: Chem., 247(1-2), 268-274. https://doi.org/10.1016/j.molcata.2005.11.057
  41. Hu, Q., Zhang, C., Wang, Z., Chen, Y., Mao, K., Zhang, X., Xiong, Y. and Zhu, M. (2008), "Photodegradation of methyl tert-butyl ether (MTBE) by UV/$H_{2}O_{2}$ and UV/$TiO_{2}$", J. Hazard. Mat., 154(1-3), 795-803. https://doi.org/10.1016/j.jhazmat.2007.10.118
  42. Hua, Z., Manping, Z., Zongfeng, X. and Low, G.K.C. (1995), "Titanium dioxide mediated photocatalytic degradation of monocrotophos", Water Res., 29(12), 2681-2688. https://doi.org/10.1016/0043-1354(95)00141-7
  43. Hung, W.-C., Fu, S.-H., Tseng, J.-J., Chu, H. and Ko, T.-H. (2007), "Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped $TiO_{2}$ prepared by the sol-gel method", Chemosphere, 66(11), 2142-2151. https://doi.org/10.1016/j.chemosphere.2006.09.037
  44. In, S., Orlov, A., Berg, R., Garcia, F., Pedrosa-Jimenez, S., Tikhov, M.S., Wright, D.S. and Lambert, R.M. (2007), "Effective visible light-activated B-doped and B, N-Codoped $TiO_{2}$ photocatalysts", J. Am. Chem. Soc., 129(45), 13790-13791. https://doi.org/10.1021/ja0749237
  45. Jo, W.-K. and Yang, C.-H. (2010), "Visible-light-induced photocatalysis of low-level methyl-tertiary butyl ether (MTBE) and trichloroethylene (TCE) using element-doped titanium dioxide", Build. Environ., 45(4), 819-824. https://doi.org/10.1016/j.buildenv.2009.08.021
  46. Kanade, K.G., Kale, B.B., Baeg, J.O., Lee, S.M., Lee, C.W., Moon, S.J. and Chang, H. (2007), "Self assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation", Mat. Chem. Phy., 102(1), 98-104. https://doi.org/10.1016/j.matchemphys.2006.11.012
  47. Kanai, H., Inouye, V., Goo, R., Chow, R., Yazawa, L. and Maka, J. (1994), "GC/MS Analysis of MTBE, ETBE, and TAME in Gasolines", Anal. Chem., 66(6), 924-927. https://doi.org/10.1021/ac00078a027
  48. Kim, D.K., O'Shea, K.E. and Cooper, W.J. (2012), "Oxidative degradation of alternative gasoline oxygenates in aqueous solution by ultrasonic irradiation: Mechanistic study", Sci. Total Environ., 430, 246-259. https://doi.org/10.1016/j.scitotenv.2011.09.016
  49. Klauson, D., Preis, S., Portjanskaja, E., Kachina, A., Krichevskaya, M. and Kallas, S.J. (2005), "The influence of Ferrous/Ferric ions on the efficiency of photocatalytic oxidation of pollutants in groundwater", J. Environ. Tech., 26(6), 653-661. https://doi.org/10.1080/09593330.2001.9619505
  50. Kuburovic, N., Todorovic, M., Raicevic, V., Orlovic, A., Jovanovic, L., Nikolic, J., Kuburovic, V., Drmanic, S. and Solevic, T. (2007), "Removal of methyl tertiary butyl ether from wastewaters using photolytic, photocatalytic and microbiological degradation processes", Desal., 213(1-3), 123-128. https://doi.org/10.1016/j.desal.2006.03.605
  51. Li, D., Haneda, H., Labhsetwar, N.K., Hishita, S. and Ohashi, N. (2005), "Visible-light-driven photocatalysis on fluorine-doped $TiO_{2}$ powders by the creation of surface oxygen vacancies", Chem. Phys. Lett., 401(4-6), 579-584. https://doi.org/10.1016/j.cplett.2004.11.126
  52. Liao, C.-H., Kang, S.-F. and Wu, F.-A. (2001), "Hydroxyl radical scavenging role of chloride and bicarbonate ions in the $H_{2}O_{2}$/UV process", Chemosphere, 44(5), 1193-1200. https://doi.org/10.1016/S0045-6535(00)00278-2
  53. Lim, L.L.P. and Lynch, R. (2011a), "Hydraulic performance of a proposed in situ photocatalytic reactor for degradation of MTBE in water", Chemosphere, 82(4), 613-620. https://doi.org/10.1016/j.chemosphere.2010.10.051
  54. Lim, L.L.P. and Lynch, R.J. (2011b), "In situ photocatalytic remediation of MTBE-contaminated water: Effects of organics and inorganics", Appl. Catal. A: General, 394(1-2), 52-61. https://doi.org/10.1016/j.apcata.2010.12.023
  55. Liu, W.-J., Zeng, F.-X., Jiang, H., Zhang, X.-S. and Li, W.-W. (2012), "Composite $Fe_{2}O_{3}$ and $ZrO_{2}$/$Al_{2}O_{3}$ photocatalyst: Preparation, characterization, and studies on the photocatalytic activity and chemical stability", Chem. Eng. J., 180, 9-18. https://doi.org/10.1016/j.cej.2011.10.085
  56. Lu, C.-S. and Chiang, T.-Y (2009), "Photocatalytic degradation of ethyl tert-butyl ether in aqueous solution mediated by $TiO_{2}$ suspension: Parameter and reaction pathway investigations", J. Chin. Chem. Soc., 56(6), 1118-1127. https://doi.org/10.1002/jccs.200900162
  57. Mascolo, G., Ciannarella, R., Balest, L. and Lopez, A. (2008), "Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation", J. Hazard. Mat., 152(3), 1138-1145. https://doi.org/10.1016/j.jhazmat.2007.07.120
  58. Mehrjouei, M., Müller, S. and Moller, D. (2012), "Removal of fuel oxygenates from water using advanced oxidation technologies by means of falling film reactor", Chem. Eng. J., 211-212, 353-359. https://doi.org/10.1016/j.cej.2012.09.079
  59. Mezyk, S.P., Jones, J., Cooper, W.J., Tobien, T., Nickelsen, M.G., Adams, J.W., O'Shea, K.E., Bartels, D.M., Wishart, J.F., Tornatore, P.M., Newman, K.S., Gregoire, K. and Weidman, D.J. (2004), "Radiation chemistry of methyl tert-butyl ether in aqueous solution", Environ. Sci. Tech., 38(14), 3994-4001. https://doi.org/10.1021/es034558t
  60. Miyauchi, M., Nakajima, A., Watanabe, T. and Hashimoto, K. (2002), "Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films", Chem. Mater., 14(6), 2812-2816. https://doi.org/10.1021/cm020076p
  61. Naeem, M., Hasanain, S.K. and Mumtaz, A. (2008), "Electrical transport and optical studies of ferromagnetic cobalt doped ZnO nanoparticles exhibiting a metal-insulator transition", J. Physics: Cond. Matt., 20(2), 025210. https://doi.org/10.1088/0953-8984/20/02/025210
  62. Orlov, A., Jefferson, D.A., Tikhov, M. and Lambert, R.M. (2007), "Enhancement of MTBE photocatalytic degradation by modification of $TiO_{2}$ with gold nanoparticles", Cat. Comm., 8(5), 821-824. https://doi.org/10.1016/j.catcom.2006.08.040
  63. Ou, H.-H. and Lo, S.-L. (2007), "Effect of Pt/Pd-doped $TiO_{2}$ on the photocatalytic degradation of trichloroethylene", J. Mol. Catal. A: Chemistry, 275(1-2), 200-205. https://doi.org/10.1016/j.molcata.2007.05.044
  64. Panda, N., Sahoo, H. and Mohapatra, S. (2011), "Decolourization of methyl orange using Fenton like mesoporous $Fe_{2}O_{3}$-$SiO_{2}$ composite", J. Hazard. Mat., 185(1), 359-365. https://doi.org/10.1016/j.jhazmat.2010.09.042
  65. Park, S.E., Joob, H. and Kang, J.W. (2003), "Photodegradation of methyl tertiary butyl ether (MTBE) vapor with immobilized titanium dioxide", Sol. Ene. Mat. Sol. Cells, 80(1), 73-84. https://doi.org/10.1016/S0927-0248(03)00133-8
  66. Perez, M., Torrades, F., García-Hortal, J.A., Domenech, X. and Peral, J. (2002), "Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions", Appl. Catal. B: Environ., 36(1), 63-74. https://doi.org/10.1016/S0926-3373(01)00281-8
  67. Prei, S., Kachina, A., Santiago, N.C. and Kallas, J. (2005), "The dependence on temperature of gas-phase photocatalytic oxidation of methyl tert-butyl ether and tert-butyl alcohol", Catal. Today, 101(3-4), 353-358. https://doi.org/10.1016/j.cattod.2005.03.015
  68. Rabindranathan, S., Devipriya, S. and Yashodharan, S. (2003), "Photocatalytic degradation of phosphamidon on semiconductor oxides", J. Hazard. Mat., 102(2-3), 217-229. https://doi.org/10.1016/S0304-3894(03)00167-5
  69. Rehman, S., Ullah, R., Butt, A.M. and Gohar, N.D. (2009), "Strategies of making $TiO_{2}$ and ZnO visible light active", J. Hazard. Mater., 170(2-3), 560-569. https://doi.org/10.1016/j.jhazmat.2009.05.064
  70. Rodriguez-Gonzalez, V., Zanella, R., del Angel, G. and Gomez, R. (2008), "MTBE visible-light photocatalytic decomposition over Au/$TiO_{2}$ and Au/$TiO_{2}$-$Al_{2}O_{3}$ sol-gel prepared catalysts", J. Mol. Catal. A: Chemistry, 281(1-2), 93-98. https://doi.org/10.1016/j.molcata.2007.07.009
  71. Safari, M., Nikazar, M., Dadvar, M. and Talebei, R. (2013), "Photocatalytic degradation of methyl tert-butyl ether (MTBE) by Fe-$TiO_{2}$ nanoparticles", J. Indust. Eng. Chem., 19(5), 1697-1702. DOI: http://dx.doi.org/10.1016/j.jiec.2013.02.008
  72. Sahle-Demessie, E., Richardson, T., Almquist, C.B. and Pillai, U.R. (2002), "Comparison of liquid and gas-phase phootooxidation of MTBE: Synthetic and field samples", J. Environ. Eng., 128(9), 782-790. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:9(782)
  73. Salanitro, J.P., Johnson, P.C., Spinnler, G.E., Maner, P.M., Wisniewski, H.L. and Bruce, C. (2000), "Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation", Environ. Sci. Tech., 34(19), 4152-4162. https://doi.org/10.1021/es000925e
  74. Seddigi, Z.S., Ahmed, S.A., Ansari, S.P., Danish, E., Alkibash, A.A. and Ahmed, S. (2013), "Kinetics and photodegradation study of aqueous methyl tert-butyl ether using zinc oxide: The effect of particle size", Int. J. Photo., 2013, 206129, pp. 1-7.
  75. Seddigi, Z.S., Bumajdad, A., Ansari, S.P., Ahmed, S.A., Danish, E., Yarkandi, N.H. and Ahmed, S. (2014), "Preparation and characterization of Pd doped ceria-ZnOnanocomposite catalyst for methyl tert-butyl ether (MTBE) photodegradation", J. Hazard. Mat., 264, 71-78. https://doi.org/10.1016/j.jhazmat.2013.10.070
  76. Selli, E., Bianchi, C.L., Pirola, C. and Bertelli, M. (2005), "Degradation of methyl tert-butyl ether in water: effects of the combined use of sonolysis and photocatalysis", Ultra. Sonochem., 12(5), 395-400. https://doi.org/10.1016/j.ultsonch.2004.04.003
  77. Serpone, N. (2006), "Isthe band gap of pristine $TiO_{2}$ narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts?", J. Phys. Chem. B, 110(48), 24287-24293. https://doi.org/10.1021/jp065659r
  78. Shinde, S.S., Shinde, P.S., Bhosale, C.H. and Rajpure, K.Y. (2011), "Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation", J. Photochem. Photobio. B: Biology, 104(3), 425-433. https://doi.org/10.1016/j.jphotobiol.2011.04.010
  79. Shinde, V.R., Gujar, T.P., Lokhande, C.D., Mane, R.S. and Han, S.-H. (2006), "Mn doped and undoped ZnO films: a comparative structural, optical and electrical properties study", Mat. Chem. Phy., 96(2-3), 326-330. https://doi.org/10.1016/j.matchemphys.2005.07.045
  80. Song, L., Qiu, R., Mo, Y., Zhang, D., Wei, H. and Xiong, Y. (2007), "Photodegradation of phenol in a polymer-modified $TiO_{2}$ semiconductor particulate system under the irradiation of visible light", Catal. Commun., 8(3), 429-433. https://doi.org/10.1016/j.catcom.2006.07.001
  81. Srinivasana, G. and Kumar, J. (2008), "Effect of Mn doping on the microstructures and optical properties of sol-gel derived ZnO thin films", J. Cryst. Gro., 310(7-9), 1841-1846. https://doi.org/10.1016/j.jcrysgro.2007.10.056
  82. Subramanian, V., Pangarkar, V.G. and Beenackers, A.A.C.M. (2000), "Photocatalytic degradation of p-hydroxybenzoic acid: relationship between substrate adsorption and photocatalytic degradation", Clean Prod. Proc., 2(3), 149-156. https://doi.org/10.1007/s100980000080
  83. Sun, H., Bai, Y., Jin, W. and Xu, N. (2008), "Visible-light-driven $TiO_{2}$ catalysts doped with low-concentration nitrogen species", Sol. Ener. Mat. Sol. Cells, 92(1), 76-83. https://doi.org/10.1016/j.solmat.2007.09.003
  84. Tabrez, S., Shakil, S., Urooj, M., Abuzenadah, A.M., Damanhouri, G.A. and Ahmad, M. (2011), "Genotoxicity testing and biomarker studies on surface waters: An overview of the techniques and their efficacies", J. Environ. Sci. Health, Part C, 29(3), 250-275. https://doi.org/10.1080/10590501.2011.601849
  85. Vamathevan, V., Tse, H., Amal, R., Low, G. and McEvoy, S. (2001), "Effects of $Fe^{3+}$ and Ag+ ions on the photocatalytic degradation of sucrose in water", Catal. Today, 68(1-3), 201-208. https://doi.org/10.1016/S0920-5861(01)00301-7
  86. Vohra, M.S. and Davies, A.P. (2000), "$TiO_{2}$-assisted photocatalysis of lead-EDTA", Water Res., 34(3), 952-964. https://doi.org/10.1016/S0043-1354(99)00223-7
  87. Wang, B., Li, Q., Wang, W., Li, Y. and Zhai, J. (2011), "Preparation and characterization of $Fe^{3+}$-doped $TiO_{2}$ on fly ash cenospheres for photocatalytic application", Appl. Surface Sci., 257(8), 3473-3479. https://doi.org/10.1016/j.apsusc.2010.11.050
  88. Wang, Y.S., Thomas, P.J. and O'Brien, P. (2006), "Optical properties ofZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions", J. Phy. Chem., B, 110(43), 21412-21415. https://doi.org/10.1021/jp0654415
  89. Wasi, S., Tabrez, S. and Ahmad, M. (2013), "Toxicological effects of major environmental pollutants: an overview", Environ. Mon. Assess., 185(3), 2585-2593. https://doi.org/10.1007/s10661-012-2732-8
  90. Wong, C.C. and Chu, W. (2003), "The direct photolysis and photocatalytic degradation of alachlor at different $TiO_{2}$ and UV sources", Chemosphere, 50(8), 981-987. https://doi.org/10.1016/S0045-6535(02)00640-9
  91. Wu, T.-N., Pan, T.-C. and Chen, L.-C. (2012), "Electrophotocatalysis of aqueous methyl tert-butyl ether on a titanium dioxide coated electrode", Electroch. Acta, 86, 170-176. https://doi.org/10.1016/j.electacta.2012.02.075
  92. Wu, Y., Xing, M. and Zhang, J. (2011), "Gel-hydrothermal synthesis of carbon and boron co-doped $TiO_{2}$ and evaluating its photocatalytic activity", J. Hazard. Mater., 192(1), 368-373.
  93. Xiao, Q., Zhang, J., Xiao, C. and Tan, X. (2007), "Photocatalytic decolorization of methylene blue over $Zn_{1-x}Co_{x}O$ under visible light irradiation", Mat. Sci. Eng. B, 142(2-3), 121-125. https://doi.org/10.1016/j.mseb.2007.06.021
  94. Xin, B., Ren, Z., Wang, P., Liu, J., Jing, L. and Fu, H. (2007), "Study on the mechanisms of photoinduced carriers separation and recombination for $Fe^{3+}$-$TiO_{2}$ photocatalysts", Appl. Surface Sci., 253(9), 4390-4395. https://doi.org/10.1016/j.apsusc.2006.09.049
  95. Xu, X.-R., Zhao, Z.-Y., Li, X.-Y. and Gu, J.-D. (2004), "Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton's reagent", Chemosphere, 55(1), 73-79. https://doi.org/10.1016/j.chemosphere.2003.11.017
  96. Zang, Y. and Farnood, R. (2005a), "Effects of hydrogen peroxide concentration and ultraviolet light intensity on methyl tert-butyl ether degradation kinetics", Chem. Eng.. Sci., 60(6), 1641-1648. https://doi.org/10.1016/j.ces.2004.11.003
  97. Zang, Y. and Farnood, R. (2005b), "Photocatalytic decomposition of methyl tert-butyl ether in aqueous slurry of titanium dioxide", Appl. Catal. B: Environ., 57(4), 275-282. https://doi.org/10.1016/j.apcatb.2004.11.005
  98. Zhong, J., Li, J.Z., He, X., Zeng, J., Lu, Y., Hu, W. and Lin, K. (2012), "Improved photocatalytic performance of Pd-doped ZnO", Current Appl. Phys., 12(3), 998-1001. https://doi.org/10.1016/j.cap.2012.01.003
  99. Zhu, X., Yuan, C., Bao, Y., Yang, J. and Wu, Y. (2005), "Photocatalytic degradation of pesticide pyridaben on $TiO_{2}$ particles", J. Mol. Catal. A: Chem., 229(1-2), 95-105. https://doi.org/10.1016/j.molcata.2004.11.010
  100. Zhu, Y., Fu, Y. and Ni, Q.-Q. (2011), "Preparation and performance of photocatalytic $TiO_{2}$ immobilized on palladium-doped carbon fiber", Appl. Surface Sci., 257(6), 2275-2280. https://doi.org/10.1016/j.apsusc.2010.09.087

피인용 문헌

  1. The Efficient Photocatalytic Degradation of MethylTert-butyl Ether Under Pd/ZnO and Visible Light Irradiation vol.91, pp.2, 2015, https://doi.org/10.1111/php.12391
  2. Photocatalytic degradation oftert-butyl alcohol andtert-butyl formate using palladium-doped zinc oxide nanoparticles with UV irradiation 2015, https://doi.org/10.1080/19443994.2015.1006826
  3. Characterisation of titania nanotubes supported gold particles for MTBE photocatalytic degradation pp.1743-6761, 2018, https://doi.org/10.1080/17436753.2018.1548147
  4. thin films by ultrasonic spray pyrolysis as photocatalytic material for air purification vol.6, pp.2, 2019, https://doi.org/10.1098/rsos.181578
  5. Photocatalytic Degradation of Methyl Tert-Butyl Ether (MTBE) from Aqueous Solution: A Review vol.3, pp.1, 2017, https://doi.org/10.29252/jhehp.3.1.5