References
- Caprino, G. and D'Amore, A. (1998), "Flexural fatigue behavior of random continuous-fiber reinforced thermoplastic composites", Compos. Sci. Tech., 58, 957-965. https://doi.org/10.1016/S0266-3538(97)00221-2
- Crossman, F.W. and Wang, A.S.D. (1982), "The dependence of transverse cracking and delamination on ply thickness in graphite/epoxy laminates", Damage in Compos Mater, ASTM STP-775, 118-139.
- Epaarachchi, J.A. and Clausen, P.D. (2003), "A model for fatigue behavior prediction of Glass Fibre- Reinforced Plastic (GFRP) composites for various stress ratios and test frequencies", Compos. A: Appl. Sci. Manuf., 34, 313-326. https://doi.org/10.1016/S1359-835X(03)00052-6
- Highsmith, A.L., Stinchcomb, W.W. and Reifsnider, K.L. (1984), "Effect of fatigue induced defects on the residual response of composite laminates", Effects of defects in Composite Materials, ASTM STP-836, 194-216.
- Mandell, J.F. (1990), Fatigue of Composite Materials, Ed. Reifsnider, K.L., Elsevier Science Publishers B.V.
- O'Brien, T.K. (1982), "Characterization of delamination onset and growth in a composite laminate", Damage in Composite Materials, ASTM STP-775, 140-167.
- Ogin, S.L., Smith, P.A. and Beaumont, P.W.R. (1985), "Matrix cracking and stiffness reduction during the fatigue of a (0/90) GFRP laminate", Compos. Sci. Tech., 22, 23-31. https://doi.org/10.1016/0266-3538(85)90088-0
- Whitworth, H.A. (2000), "Evaluation of the residual strength degradation in composites laminates under fatigue loadings", Compos. Struct., 48, 261-264. https://doi.org/10.1016/S0263-8223(99)00113-0
- Whitworth, H.A. (1997), "A stiffness degradation model for composite laminates under fatigue loading", Compos. Struct., 40, 95-101. https://doi.org/10.1016/S0263-8223(97)00142-6
- Ye, L. (1989), "On fatigue damage accumulation and material degradation in composite materials", Compos. Sci. Tech., 36, 339-350. https://doi.org/10.1016/0266-3538(89)90046-8
- Poursartip, A. and Beaumont, P.W.R. (1983), A damage approach to the fatigue of composites, Mechanics of Composite Materials, Recent Advances, Ed. Hashin, Z. and Herakovich, C.T., Pergamon Press, New York.
- Poursartip, A., Ashby, M.F. and Beaumont, P.W.R. (1986), "The fatigue damage mechanics of a carbon fiber composite laminate, I - Development of the model", Compos. Sci. Tech., 25, 193. https://doi.org/10.1016/0266-3538(86)90010-2
- Prusty, B.G., Pan, J.W. and Sul, J. (2009), "Characterization of temperature-dependent behavior of chopped strand mat GRP during low cyclic fatigue", Conference of Composites or Nano Engineering, Honolulu, Hawaii.
- Reifsnider, K.L. (1986), "The critical element model: a modeling philosophy", Eng. Fract. Mech., 25, 739-749. https://doi.org/10.1016/0013-7944(86)90037-8
- Reifsnider, K.L., Henneke, E.G., Stinchcomb, W.W. and Duke, J.C. (1983), "Damage mechanisms and NDE of composite laminates", Mechanics of Composite Materials, Recent Advances, Ed. Hashin, Z. and Herakovich, C.T., Pergamon Press, New York.
- Shokrieh, M.M. and Lessard, L.B. (2000), "Progressive fatigue damage modeling of composite materials Part I: modeling", J. Compos. Mater., 34, 1056. https://doi.org/10.1177/002199830003401301
- Sul, J.H., Prusty, B.G. and Pan, J.W. (2010), "A fatigue life prediction model for Chopped Strand Mat GRP at elevated temperatures", Fatig. Fract. Eng. Mater. Struct., 33, 513-521. https://doi.org/10.1111/j.1460-2695.2010.01460.x
- Wang, S.S. and Chim, E.S.M. (1983), "Fatigue damage and degradation in random short-fiber SMC composite", J. Compos. Mater., 17, 114-131. https://doi.org/10.1177/002199838301700203
- Whitworth, H.A. (1987), "Modeling the stiffness reduction of graphite/epoxy composite laminates", J. Compos. Mater., 21, 362-372. https://doi.org/10.1177/002199838702100405
- Yang, J.N, Jones, D.L., Yang, S.H. and Meskini, A. (1990), "Stiffness degradation model for graphite/ epoxy laminates", J. Compos. Mater., 24, 753-769. https://doi.org/10.1177/002199839002400705
Cited by
- A probabilistic analysis of Miner's law for different loading conditions vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.071
- A combined micromechanical-energy method to predict the fatigue life of nanoparticles/chopped strand mat/polymer hybrid nanocomposites vol.133, 2015, https://doi.org/10.1016/j.compstruct.2015.08.003
- Flexural fatigue modeling of short fibers/epoxy composites vol.64, pp.3, 2014, https://doi.org/10.12989/sem.2017.64.3.287
- Very high cycle and gigacycle fatigue of fiber-reinforced composites: A review on experimental approaches and fatigue damage mechanisms vol.118, pp.None, 2014, https://doi.org/10.1016/j.pmatsci.2020.100762