참고문헌
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Upper Saddle River, New Jersey.
- Belounar, L. and Guenfoud, M. (2005), "A new rectangular finite element based on the strain approach for plate bending", Thin Wall. Struct., 43(1), 47-63. https://doi.org/10.1016/j.tws.2004.08.003
- Belytschko, T., Stolarski, B. and Carpenter, N. (1984), "A C0 triangular plate element with one-point quadrature", Int. J. Numer. Method. Eng., 20, 787-802. https://doi.org/10.1002/nme.1620200502
- Cen, S., Long, Y., Yao, Z. and Chiew, S. (2006), "Application of the quadrilateral area coordinate method", Int. J. Numer. Eng., 66, 1-45. https://doi.org/10.1002/nme.1533
- Cook, R.D., Malkus, D.S. and Michael, E.P. (1989), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Inc., Canada.
- Celik, M. (1996), "Plak sonlu elemanlarda kayma sekildegistirmelerinin gozonune alınması ve iki parametreli zemine oturan plaklarin hesabi icin bir yontem", Ph. D. Thesis, Istanbul Technical University, Istanbul.
- Duster, A. (2001), "High order finite elements for three-dimensional thin-walled nonlinear continua", Ph.D. Thesis of Technische Universitat Munchen.
- Flanagan, D.P. and Belytscho, T. (1981), "Uniform strain hexahedron and quadrilateral with orthogonal hourglass control", Int. J. Numer. Method. Eng., 17, 679-706. https://doi.org/10.1002/nme.1620170504
- Hughes, T.J.R. (2000), The Finite Element Method, Dover Publications.
- Hughes, T.J.R., Cohen, M. and Harou, M. (1978), "Reduced and selective integration techniques in the finite element analysis of plates", Nucl. Eng. Des., 46, 203-222. https://doi.org/10.1016/0029-5493(78)90184-X
- Hughes, T.J.R., Taylor, R.L. and Kalcjai, W. (1977), "Simple and efficient element for plate bending", Int. J. Numer. Meth. Eng., 11, 1529-1543. https://doi.org/10.1002/nme.1620111005
- Ibrahimbegovic, A. (1993), "Quadrilateral finite elements for analysis of thick and thin plates", Comput. Meth. App. M., 110, 195-209. https://doi.org/10.1016/0045-7825(93)90160-Y
- Lovadina, C. (1996), "A new class of mixed finite element methods for Reissner-Mindlin Plates", SIAM J. Numer. Anal., 33, 2457-2467. https://doi.org/10.1137/S0036142994265061
- Mindlin, R.D. (1951),"I"nfluence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. M., 18, 31-38.
- Olovsson, L., Simonsson, K. and Unosson, M. (2006), "Shear locking reduction in eight-noded tri-linear solid finite elements", Comput. Struct., 84, 476-484. https://doi.org/10.1016/j.compstruc.2005.09.014
- Owen, D.R.J. and Zienkiewicz, O.C. (1982), "A refined higher-order Co plate bending element", Comput. Struct., 15, 83-177.
- Ozkul, T.A. and Ture, U. (2004), "The transition from thin plates to moderately thick plates by using finite element analysis and the shear locking problem", Thin Wall. Struct., 42, 1405-1430. https://doi.org/10.1016/j.tws.2004.05.003
- Ozdemir, Y.I., Bekiroglu, S. and Ayvaz, Y. (2007), "Shear locking-free analysis of thick plates using Mindlin's theory", Struct. Eng. Mech., 27(3), 311-331. https://doi.org/10.12989/sem.2007.27.3.311
- Ozdemir, Y.I. (2007), "Parametric analysis of thick plates subjected to earthquake excitations by using Mindlin's theory", Ph. D. Thesis, Karadeniz Technical University, Trabzon.
- Panc, V. (1975), Theory of Elastic Plates, Noordhoff, Leidin.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech. (ASME), 12, A69-A77.
- Reissner, E. (1950), "On a variational theorem in elasticity", J. Math. Phys., 29, 90-95.
- Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, Second Edition, McGraw- Hill., New York.
- Soh, A.K., Cen, S., Long, Y. and Long, Z. (2001), "A new twelve DOF quadrilateral element for analysis of thick and thin plates", Eur. J. Mech., A-Solid., 20, 299-326. https://doi.org/10.1016/S0997-7538(00)01129-3
- Weaver, W. and Johnston, P.R. (1984), Finite elements for structural analysis, Prentice Hall, Englewood Cliffs; New Jersey.
- Yuan, F.G. and Miller, RE. (1988), "A rectangular finite element for moderately thick flat plates", Comput. Struct., 30, 1375-87. https://doi.org/10.1016/0045-7949(88)90202-7
- Yuan, F-G. and Miller, R.E. (1989), "A cubic triangular finite element for flat plates with shear", Int. J. Numer. Eng., 18(1), 1-15.
- Yuqiu, L. and Fei, X. (1992), "A universal method for including shear deformation in thin plates elements", Int. J. Numer. Eng., 34, 171-177. https://doi.org/10.1002/nme.1620340110
- Zienkiewich, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211
- Zienkiewicz, O.C., Xu, Z., Ling, F.Z. and Samuelsson, A. (1993), "Linked interpolation for Reissner- Mindlin plate element: part I-a simple quadrilateral", Int. J. Numer. Meth. Eng., 36, 3043-3056. https://doi.org/10.1002/nme.1620361802
피인용 문헌
- Critical Plate Thickness for Energy Dissipation During Sphere–Plate Elastoplastic Impact Involving Flexural Vibrations vol.139, pp.4, 2017, https://doi.org/10.1115/1.4035338
- Eigenfrequencies of simply supported taper plates with cut-outs vol.63, pp.1, 2017, https://doi.org/10.12989/sem.2017.63.1.103