References
- Akyildiz, H. and Unal, N.E. (2006), "Sloshing in a three-dimensional rectangular tank: numerical simulation and experimental validation", Ocean Eng., 33, 2135-2149. https://doi.org/10.1016/j.oceaneng.2005.11.001
- Aliabadi, S., Johnson, A. and Abedi, J. (2003), "Comparison of finite element and pendulum models for simulation of sloshing", Comput. Fluids, 32, 535-545. https://doi.org/10.1016/S0045-7930(02)00006-3
- Biswal, K.C., Bhattacharyya, S.K. and Sinha, P.K. (2006), "Non-linear sloshing in partially liquid filled containers with baffles", Int. J. Numer. Meth. Eng., 68, 317-337. https://doi.org/10.1002/nme.1709
- Cheng, X., Hu, M. and Wen, J. (2008), "Dynamic characteristics of liquid sloshing in a transversely vibrating spherical tank with a spacer under low gravity", J. Hydrodynam., Ser. B, 20, 762-769. https://doi.org/10.1016/S1001-6058(09)60013-5
- Coello, C.A. (1999), "A comprehensive survey of evolutionary based multiobjective optimization techniques", Knowl. Inf. Syst., 3, 269-308.
- Craig, K.J. and Kingsley, T.C. (2007), "Design optimization of containers for sloshing and impact", Struct. Multidisc. Optim. 33, 71-87.
- DIN EN 12663 (2000), Railway Applications- Structural Requirements of Railway Vehicle Bodies.
- Eswaran, M., Saha, U.K. and Maity, D. (2009), "Effect of baffles on a partially filled cubic tank: numerical simulation and experimental validation", Comput. Struct., 87, 198-205. https://doi.org/10.1016/j.compstruc.2008.10.008
- Goudarzi, M.A., Sabbagh-Yazdi, S.R. and Marx, W. (2010), "Investigation of sloshing damping in baffled rectangular tanks subjected to the dynamic excitation", Bull. Earthq. Eng., 8, 1055-1072. https://doi.org/10.1007/s10518-009-9168-8
- Horn, J., Nafpliotis, N. and Goldberg, D.E. (1994), "A niched pareto genetic algorithm for multiobjective optimization", Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1, IEEE Service Centre, Piscataway, NJ.
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2, 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Jin, Y., Olhofer, M. and Sendhoff, B. (2002), "A framework for evolutionary optimization with approximate fitness functions", IEEE Tran. Evol. Comput., 6(5), 481-494. https://doi.org/10.1109/TEVC.2002.800884
- Kim, H.S. and Lee, Y.S. (2008), "Optimization design technique for reduction of sloshing by evolutionary methods", Mech. Sci. Technol., 22, 25-33. https://doi.org/10.1007/s12206-007-1003-z
- Knowles, J. and Corne, D. (1999), "The pareto archived evolution strategy: a new baseline algorithm for multiobjective optimization", Proceedings of the Congress on Evolutionary Computation, IEEE Service Center, Piscataway, NJ.
- Lee, D.H., Kim, M.H., Kwon, S.H., Kim, J.W. and Lee, Y.B. (2007), "A parametric sensitivity study on LNG tank sloshing loads by numerical simulations", Ocean Eng., 34, 3-9. https://doi.org/10.1016/j.oceaneng.2006.03.014
- Liew, K.M., Ray, T., Tan, H. and Tan, M.J. (2002), "Evolutionary optimization and use of neural network for optimum stamping process design for minimum spring-back", Comput. Inf. Sci. Eng., 2, 38-44. https://doi.org/10.1115/1.1482399
- Liu, D. and Lin, P. (2009), "Three-dimensional liquid sloshing in a tank with baffles", Ocean Eng., 36, 202-212. https://doi.org/10.1016/j.oceaneng.2008.10.004
- Livaoglu, R. and Dogangun, A. (2007), "Effect of foundation embedment on seismic behavior of elevated tanks considering fluid-structure-soil interaction", Soil Dyn. Earthq. Eng., 27, 855-863. https://doi.org/10.1016/j.soildyn.2007.01.008
- Lloyd, N., Vaiciurgis, E. and Langrish, T. (2002), "The effect of baffle design on longitudinal liquid movement in road tankers: an experimental investigation", Tran. I. Chem. E., Part B, 80, 181-185.
- Mitra, S. and Sinhamahapatra, K.P. (2007), "Slosh dynamics of liquid-filled containers with submerged components using pressure-based finite element method", Sound Vib., 304, 361-381. https://doi.org/10.1016/j.jsv.2007.03.014
- Mitra, S. and Sinhamahapatra, K.P. (2008), "2D simulation of fluid-structure interaction using finite element method", Finite Elem. Anal. Des., 45, 52-59. https://doi.org/10.1016/j.finel.2008.07.006
- Panigrahy, P.K., Saha, U.K. and Maity, D. (2009), "Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks", Ocean Eng., 36, 213-222. https://doi.org/10.1016/j.oceaneng.2008.11.002
- Popov, G., Sankar, S., Sankar, T.S. and Vatistas, V.H. (1992), "Liquid sloshing in rectangular road containers", Comput. Fluid., 21, 551-569. https://doi.org/10.1016/0045-7930(92)90006-H
- Ray, T., Gokarn, R.P. and Sha, O.P. (1996), "Neural network applications in naval architecture and marine engineering", Artif. Intell. Eng., 1, 213-226.
- Rebouillat, S. and Liksonov, D. (2010), "Fluid-structure interaction in partially filled liquid containers: a comparative review of numerical approaches", Comput. Fluid., 39, 739-746. https://doi.org/10.1016/j.compfluid.2009.12.010
- Schotte, J.S. and Ohayon, R. (2009), "Various modelling levels to represent internal liquid behaviour in the vibration analysis of complex structures", Comput. Meth. Appl. Mech. Eng., 198, 1913-1925. https://doi.org/10.1016/j.cma.2008.12.016
- Shekari, M.R, Khaji, N. and Ahmadi, M.T. (2009), "A coupled BE-FE study for evaluation of seismically isolated cylindrical liquid storage tanks considering fluid-structure interaction", J. Fluids Struct., 25, 567-585. https://doi.org/10.1016/j.jfluidstructs.2008.07.005
- Souto-Iglesias, A., Delorme, L., Perez-Rojas, L. and Abril-Perez, S. (2006), "Liquid moment amplitude assessment in sloshing type problems with smooth particle hydrodynamics", Ocean Eng., 33, 1462-1484. https://doi.org/10.1016/j.oceaneng.2005.10.011
- Srinivas, V. and Deb, K. (1994), "Multiobjective optimization using nondominated sorting in genetic algorithms", J. Evolut. Comput., 2(3), 221-248. https://doi.org/10.1162/evco.1994.2.3.221
- Veldman, A.E.P., Gerrits, J., Luppes, R., Helder, J.A. and Vreeburg, J.P.B. (2007), "The numerical simulation of liquid sloshing on board spacecraft", J. Comput. Phys., 224, 82-99. https://doi.org/10.1016/j.jcp.2006.12.020
- Wei, W., Junfeng, L. and Tianshu, W. (2008), "Modal analysis of liquid sloshing with different contact line boundary conditions using FEM", Sound Vib., 317, 739-759. https://doi.org/10.1016/j.jsv.2008.03.070
Cited by
- Effect of higher modes and multi-directional seismic excitations on power plant liquid storage pools vol.8, pp.3, 2015, https://doi.org/10.12989/eas.2015.8.3.779