DOI QR코드

DOI QR Code

Optical Characteristics of Plamonic Waveguide Using Tapered Structure

테이퍼 구조를 이용한 플라즈모닉 도파로의 광학 특성

  • Kim, Doo Gun (Korea Photonics Technology Institute, Photonic-Bio Research Center) ;
  • Kim, Hong-Seung (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Oh, Geum-Yoon (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Seon-Hoon (Korea Photonics Technology Institute, Photonic-Bio Research Center) ;
  • Ki, Hyun-Chul (Korea Photonics Technology Institute, Photonic-Bio Research Center) ;
  • Kim, Tae-Un (Korea Photonics Technology Institute, Photonic-Bio Research Center) ;
  • Kim, Hwe Jong (Korea Photonics Technology Institute, Photonic-Bio Research Center) ;
  • Ma, Ping (Laboratory for Electromagnetic Field and Microwave Electronics, ETH Zurich) ;
  • Hafner, Christian (Laboratory for Electromagnetic Field and Microwave Electronics, ETH Zurich) ;
  • Choi, Young-Wan (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 김두근 (한국광기술원 광바이오연구센터) ;
  • 김홍승 (중앙대학교 전기전자공학부) ;
  • 오금윤 (중앙대학교 전기전자공학부) ;
  • 김선훈 (한국광기술원 광바이오연구센터) ;
  • 기현철 (한국광기술원 광바이오연구센터) ;
  • 김태언 (한국광기술원 광바이오연구센터) ;
  • 김회종 (한국광기술원 광바이오연구센터) ;
  • ;
  • ;
  • 최영완 (중앙대학교 전기전자공학부)
  • Received : 2014.01.23
  • Accepted : 2014.02.19
  • Published : 2014.03.01

Abstract

We have investigated the optical properties of plamonic waveguide with tapered structure based on InP material for photonic integrated circuit(PIC). The proposed plasmonic waveguide is covered with the Ag thin film to generate the plasmonic wave on metallic interface. The optical characteristics of plasmonic waveguide were calculated using the three-dimensional finite-difference time-domain method. The plasmonic waveguide was fabricated with the lengths of 2 to $10{\mu}m$ and the widths of 400 to 700 nm, respectively. The plasmonic mode and optical loss were measured. The optimum plasmonic length is $10{\mu}m$ and widths are 600 and 700 nm in the fabricated waveguide. This plasmonic waveguide can be directly integrated with other conventional optical devices and can be essential building blocks of PIC.

Keywords

References

  1. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout and R. Baets, V. Wiaux, and S. Beckx, Optics Express, 12, 1583 (2004). https://doi.org/10.1364/OPEX.12.001583
  2. Mo Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, Nature, 456, 480 (2008). https://doi.org/10.1038/nature07545
  3. A Argyris, M Hamacher, K E Chlouverakis, A Bogris, and D Syvridis, PRL, 100, 194101 (2008). https://doi.org/10.1103/PhysRevLett.100.194101
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature, 440, 508 (2006). https://doi.org/10.1038/nature04594
  5. J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, J. Appl. Phys., 106, 023108 (2009). https://doi.org/10.1063/1.3177341
  6. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, Nano Letters, 9, 897 (2009). https://doi.org/10.1021/nl803868k
  7. J. Homola, S. S. Yee, and G. Gauglitz, Sensor. Actuat., B-Chemical, 54, 3 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9
  8. U. Fano, J. Opt. Soc. Amer., 31, 213 (1941). https://doi.org/10.1364/JOSA.31.000213
  9. A. Otto, Z. Phys., 216, 398 (1968). https://doi.org/10.1007/BF01391532
  10. E. Kretshmann and H. Raether, Z. Naturforsch., 23, 2135 (1968).
  11. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, 1996)
  12. K. S. Yee, IEEE Trans. Antennas Propag., 14, 302 (1966). https://doi.org/10.1109/TAP.1966.1138693
  13. T. O. Korner and W. Fichtner, Opt. Lett., 22, 1586 (1997). https://doi.org/10.1364/OL.22.001586
  14. P. Drude, Annalen der Physik, 3, 369 (1900).