DOI QR코드

DOI QR Code

Harmonized Non-linear Interaction Between Different Two Vortex Shedding Frequencies

서로 다른 두 개의 와류방출 주파수간의 비선형간섭

  • Kim, Sang Il (Dept. of Mechanical Engineering, Kangwon Nat'l Univ.) ;
  • Seung, Sam Sun (Dept. of Vehicle Engineering, Kangwon Nat'l Univ.) ;
  • Lee, Seung-Chul (Division of Fire Protection Engineering, Kangwon Nat'l Univ.)
  • 김상일 (강원대학교 기계공학과) ;
  • 승삼선 (강원대학교 자동차공학과) ;
  • 이승철 (강원대학교 소방방재공학전공)
  • Received : 2013.08.09
  • Accepted : 2013.12.09
  • Published : 2014.03.01

Abstract

This study analyzes the nonlinear interaction between two different vortex shedding frequencies from a cylinder with two diameters. In particular, two different vortex shedding frequencies are generated by preparing a cylinder having two diameters artificially. Flow velocity fluctuations behind the cylinder are measured three-dimensionally. Additionally, we fabricated a hole and placed a pressure transducer for measuring the pressure on the cylinder surface. The pressure signal from the pressure transducer is used as basic signal. A TSC(Trans Spectrum Coherence) is used for checking the strength of the nonlinear interaction between two different vortex shedding frequencies. As a result, the following are clarified: i) frequency distribution behind the cylinder, ii) three-dimensional flow state behind the cylinder through calculation of ensemble average, and iii) close relationship between the vertical vortex and change of low frequency by nonlinear interaction between two different vortex shedding frequencies from the cylinder with two diameters.

본 연구는 서로 다른 두 개의 직경을 가지는 원기둥으로부터 나오는 두 개의 와류방출주파수간의 비선형간섭에 관한 것이다. 두 개의 서로 다른 주파수는 두 개의 직경을 가지는 원기둥에 의해 인위적으로 만들어졌고, 원기둥 후류의 속도 변동은 3 차원으로 측정되었다. 그리고 원기둥 표면에는 압력공이 설치되어 원기둥 표면의 압력도 측정하였다. 이 압력 신호를 기준 신호로 사용하였다. TSC 해석을 병행하여 두 주파수간의 비선형간섭의 세기를 조사하였다. 그 결과, 다음과 사실을 알았다. i)원기둥 후류의 주파수 분포, ii)위상집합평균법에 의한 원기둥 후류의 3 차원적인 흐름 상태, iii)두 개의 직경을 가지는 원기둥에서 나오는 두 개의 주파수간의 비선형간섭과 저주파의 종와류과의 관계.

Keywords

References

  1. Yokoi, Y. and Kamemoto, K., 1991, "The Initial Stage of a Three-Dimensional Vortex Structure Existing in a Two-Dimensional Boundary Layer Separation Flow," Trans. of the JSME(B), Vol. 57, No. 534, pp. 427-433. https://doi.org/10.1299/kikaib.57.427
  2. Haniu, H., Sakamoto, H., Nakamura, J. and Obata, Y., 1995, "Long Time Scale Fluctuation in the Irregularity of Vortex Shedding," Trans. of the JSME(B), Vol. 61, No. 582, pp. 379-387. https://doi.org/10.1299/kikaib.61.379
  3. Collis, W.B., White, P.R. and Hammond, J.K., 1998, "Highter Order Spectra: the Bispectrum and Trispectrum," Mechanical Systems and Signal Processing,Vol.12, No. 3, pp. 375-394. https://doi.org/10.1006/mssp.1997.0145
  4. Lii, K. S., Resenblatt,M. and Van Atta, C., 1976, "Bispectral Measurements in the Turbulence," Journal of Fluid Mechanics, Vol. 77, pp. 45-62. https://doi.org/10.1017/S0022112076001122
  5. Kim, Y. C. and Powers, E. J., 1979, "Digital Bispectral Analysis of Self Excited Fluctuation Spectra," The Physics of Fluids, Vol. 21, pp. 2406-2416.
  6. Kim, Y. C. and Powers, E. J., 1979, "Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interaction," IEEE Transactions on Plasma Science, Vol.PS-7, pp. 120-131.
  7. Vaidya, P.J. and Anderson, M.J., 1991, "Use of the Trans-Spectral-Coherence Technique to Separate Signal from Noise," J. Accoust. Soc. Am., Vol. 89, pp. 2370-2377. https://doi.org/10.1121/1.400973