DOI QR코드

DOI QR Code

A Change of Porewater Pressure under Particle Crushing of Carbonate Sand of Sabkha Layer

Sabkha층 탄산질 모래의 입자파쇄에 따른 간극수압 변화

  • Kim, Seok-Ju (Dept. of Civil Engrg., Gyeongbuk Provincial College) ;
  • Yi, Chang-Tok (Dept. of Civil, Safety and Environmental Engrg., Hankyong National Univ.) ;
  • Ji, Won-Baek (Plant Civil Design Team, DAEWOO Engineer Engrg. & Construction Co. Ltd.) ;
  • Han, Heui-Soo (Dept. of Civil Engrg., Kumoh National Institute of Technology)
  • 김석주 (경북도립대학교 토목과) ;
  • 이장덕 (국립한경대학교 토목안전환경공학과) ;
  • 지원백 (대우건설 플랜트토목설계팀) ;
  • 한희수 (국립금오공과대학교 토목공학과)
  • Received : 2013.07.18
  • Accepted : 2014.02.19
  • Published : 2014.02.28

Abstract

Carbonate sand of Sabkha layer in the middle east was made of deposition of shell fragments and it consisted of porous particles containing inner void. Generally, at yield stress the soil structure begins to break down, so the porewater pressure and the settlement are increased rapidly. In carbonate sand, unlike quartz sand if particle crushing happens, the inner voids are exposed and porewater pressure can be decreased under yield stress. Porewater pressure can be determined as the sum of excess porewater pressure due to increase of relative density, inner void expose of particle under particle crushing stress and rearrangement of crushed particle fragments. The porewater pressure can be negative value in case of greater amount of inner void expose, so if particle crushing is bigger, the porewater pressure value is smaller. The negative value zone of porewater pressure from triaxial test result means particle crushing effect is bigger than outer void decrease effect and the particle crushing effect dominant zone size was 1.50∼3.46% from triaxial test result of Sabkha layer.

중동지역 Sabkha층 탄산질 모래는 패각류가 퇴적되어 생성되었으며, 내부간극을 포함한 다공질의 입자로 구성되어 있다. 일반적으로 흙은 항복하중에서 구조가 파괴되어 간극수압 및 침하량이 급격히 증가하게 된다. 그러나 석영질 모래와는 달리 탄산질 모래의 경우 항복하중에 따른 입자파쇄시 내부간극이 외부로 노출되어 간극수압이 감소 될 수 있다. 탄산질 모래에서 발생된 과잉간극 수압은 하중 재하시 상대밀도 증가로 인한 과잉간극수압과 입자파쇄에 따른 내부간극 노출로 인한 과잉간극수압, 파쇄입자의 재배열로 인한 과잉간극 수압의 합에 의해 결정되며, 내부간극의 노출량에 따라 음(-)의 값이 나타날 수 있다. 입자파쇄량이 크면 간극수압이 작게, 입자파쇄량이 작으면 간극수압이 크게 나타난다. 삼축압축시험 결과 음(-)의 간극수압이 나타난 구간은 외부간극 감소에 비해 입자파쇄가 우세한 영역이며, 현장 Sabkha층에서 확인된 입자파쇄 우세 영역의 크기는 1.50~3.46%의 값을 나타내었다.

Keywords

References

  1. Aiban, S. A., Al-Ahmadi, H. M., Asi, I. M., Siddique, Z. U., and Al-Amoudi, O. S. B. (2006), "Effect of Geotextile and Cement on The Performance of Sabkha Subgrade", Buildig and Environment, Vol.41, pp.807-820. https://doi.org/10.1016/j.buildenv.2005.03.006
  2. Al-Amoudi, O. S. B. (1992), Studies on Soil-foundation Interaction in the Sabkha Environment of Eastern Province of Saudi Arabia, Ph, D. Thesis, King Fahd University of Petroleum and Minerals, Saudi Arabia. pp.1-12
  3. Al-Shamrani, M. A. and Dhowian, A. W. (1996), "Characterization of secondary compression behavior of sabkha soils", Journal of engineering geology, Vol.48, No.1-2, pp.19-41.
  4. Al-Shamrani, M. A. and Dhowian, A. W. (1997), "Preloading for Reduction of Compressibility Characteristics of Sabkha Soil Profiles", Engineering Geology, Vol.48, No.1-2, pp.19-41. https://doi.org/10.1016/S0013-7952(97)81912-6
  5. Casagrande, A. (1936), "The Determination of the Preconsolidation Load and Its Practical Significance", Proceedings of 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Mass. Vol.3, pp.60-64.
  6. Coop, M. R. (1990), "The Mechanics of Uncemented Carbonate Sands", Geotechnique, Vol.40, No.4, pp.607-626. https://doi.org/10.1680/geot.1990.40.4.607
  7. Dhowian, A. W., Erol, A. O., and Sultan, S. (1987), "Settlement Predictions in Complex Sabkha Soil Profiles", Bulletin of Engineering Geology, No.36, pp.11-21.
  8. Golightly, C. R. and Hyde, A. F. L. (1988), "Some Fundamental Properties of Carbonate Sands", International Conference on Calcareous Cediments, perth, Australia, Vol.1, pp.69-78.
  9. Jaky, J. (1944), "The Coefficient of Earth Pressure at Rest", Journal of the Society of Hungarian Architects and Engineers, Vol.7, pp.355-358.
  10. Juillie, Y. and Sherwood, D. E. (1983), "Improvement of Sabkha Soil of Arabian Gulf Coast", Proceedings of The 8th European Conference on Soil Mechanics and Foundation Engineering, Helsinki, Vol.2, pp.781-788.
  11. Khan, I. H. and Hasnain, S. I. (1981), "Engineering Properties of Sabkha Soils in The Benghazi Plain and Construction Problems", Engineering Geology, Vol.17, No.3, pp.175-183. https://doi.org/10.1016/0013-7952(81)90082-X
  12. Kwag, J. M. (1999), "A Basic Study on Crushability of Sands and Characteristics of Particle Strength", Journal of the Korean Geotechnical Society, Vol.15, No.15, pp.193-204.
  13. Lee, K. L. and Seed, H. B. (1967), "Cyclic Stress Conditions Causing Liquefaction of Sand", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, No.SM1, pp.47-70.
  14. Miura, N. and O-hara, S. N. (1979), "Particle Crushing of a Decomposed Granite Soil under Shear Stresses", Soils and Foundations, JGS, Vol.19, No.3, pp.1-14.
  15. Terzaghi, K., Peck, R. B., and Mesri, G. (1996), Soil Mechanics in Engineering Practice 3rd Edition, John Wiley and Sons. New York, pp.161-208.