DOI QR코드

DOI QR Code

고주파 유도 가열에 의한 나노구조 Mg4Al2Ti9O25 합성 및 소결과 기계적 성질

Synthesis and Sintering of Nanostructured Mg4Al2Ti9O25 by High-Frequency Induction Heating and Its Mechanical Properties

  • 강현수 (전북대학교 신소재공학부 신소재개발 연구센터) ;
  • 도정만 (한국과학 기술 연구원 계면 제어 연구센터) ;
  • 윤진국 (한국과학 기술 연구원 계면 제어 연구센터) ;
  • 손인진 (전북대학교 신소재공학부 신소재개발 연구센터)
  • Kang, Hyun-Su (Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Doh, Jung-Mann (Interface Control Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Jin-Kook (Interface Control Research Center, Korea Institute of Science and Technology) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
  • 투고 : 2013.10.27
  • 심사 : 2014.01.02
  • 발행 : 2014.02.27

초록

Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties, including high strength, high hardness, excellent ductility and toughness. In this study, nanopowders of $Al_2O_3$, MgO and $TiO_2$ were prepared as starting materials by high energy ball milling for the simultaneous synthesis and sintering of the nanostructured compound $Mg_4Al_2Ti_9O_{25}$ by high-frequency induction heating process. The highly dense nanostructured $Mg_4Al_2Ti_9O_{25}$ compound was produced within one minute by the simultaneous application of 80MPa pressure and induced current. The sintering behavior, grain size and mechanical properties of the $Mg_4Al_2Ti_9O_{25}$ compound were evaluated.

키워드

참고문헌

  1. S. Jayanthi and T. R. N. Kutty, Mater. Lett., 62, 556 (2008). https://doi.org/10.1016/j.matlet.2007.06.013
  2. I. J. Shon, I. Y. Ko, H. S. Kang, K. T. Hong, J. M. Doh and J. K. Yoon, Met. Mater. Int., 18, 109 (2012). https://doi.org/10.1007/s12540-012-0030-1
  3. W. Kim, H. J. Wang, K. M. Roh, S. W. Cho, J. W. Lim and I. J. Shon, Kor. J. Met. Mater., 50, 310 (2012).
  4. Karch, R. Birringer and H. Gleiter. Nature, 330, 556 (1987). https://doi.org/10.1038/330556a0
  5. A. M. George, J. Iniguuze and L. Bellaiche, Nature, 413, 54 (2001). https://doi.org/10.1038/35092530
  6. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  7. Z Fang, JW Eason, Int. J. Refractory Met. Hard Mater., 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  8. A. I. Y. Tok, L. H. Luo and F. Y. C. Boey, Mater. Sci. Eng. A. 383, 229 (2004). https://doi.org/10.1016/j.msea.2004.05.071
  9. I. J. Shon, K. I. Na, J. M. Doh, H. K. Park and J. K. Yoon, Met. Mater. Int., 19, 99 (2013). https://doi.org/10.1007/s12540-013-1016-3
  10. W. Kim, C. Y. Suh, K. M. Roh, J. W. Lim, H. B. Shim, H. K. Park and I. J. Shon, Kor. J. Met. Mater., 50, 861 (2012).
  11. G. W. Lee and I. J. Shon, Kor. J. Met. Mater., 51, 95 (2013).
  12. I. J. Shon, G. W. Lee, J. M. Doh and J. K. Yoon, Electron. Mater. Lett., 9, 219 (2013). https://doi.org/10.1007/s13391-012-2142-7
  13. S. M. Kwak, H. K. Park and I. J. Shon, Kor. J. Met. Mater., 51, 314 (2013).
  14. C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  15. Z. Shen, M. Johnsson, Z. Zhao and M. Nygren, J. Am. Ceram. Soc., 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  16. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka- Kumar, Appl. Phys. Lett., 85, 573 (2004). https://doi.org/10.1063/1.1774268
  17. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  18. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir, Acta Mater., 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  19. R. L. Coble, J. Appl. Phys., 41, 4798 (1970). https://doi.org/10.1063/1.1658543
  20. Hwan-Cheol Kim, In-Jin Shon, In-Kyoon Jeong and In- Yong Ko, Met. Mater. Int., 12, 393 (2006). https://doi.org/10.1007/BF03027705
  21. K. Niihara, R. Morena and D. P. H. Hasselman, J. Mater. Sci. Lett., 1, 12 (1982).