DOI QR코드

DOI QR Code

Estimation of Atmospheric PAH Concentrations and Sources at Several Sites Using Pine Needles as a Passive Air Sampler

소나무잎을 Passive Air Sampler로 이용하여 지역별 대기 중 다환방향족 탄화수소의 농도 및 발생원 추정

  • Chun, Man-Young (Department of Environmental Engineering, Hankyung National University)
  • Received : 2013.11.07
  • Accepted : 2013.12.10
  • Published : 2014.02.28

Abstract

Objectives: This study was carried out in order to estimate atmospheric polycyclic aromatic hydrocarbon (PAH) concentrations and sources using pine needles as a passive air sampler (PAS) in urban (Pyeongtaek), semirural (Anseong) and rural (Jincheon) sites. Methods: One-year-old pine needles were collected for analysis of their PAH concentrations ($C_{p,n}g/g$ dry) at the end of December. PAHs concentrations in the ambient air ($C_a$, $ng/m^3$) were calculated with a $Log(C_p/C_a)-LogK_{oa}$ correlational equation. Results: PAHs concentrations in ambient air ($C_a$) were high, in the order of urban ($114.03ng/m^3$), semirural ($105.17ng/m^3$) and rural ($61.91ng/m^3$) sites. However, distributions of PAH isomer concentrations were very similar. PAHs of which molecular weight is smaller than 228.30 (AcPy, Acp, Flu, Phen, Ant, Flt, Pyr, BaA, Chry) made up most of the PAHs in the ambient air (96.6-98.5%). Conclusion: At urban, semirural and rural sites, it was concluded that the main source of PAHs in the ambient air ratio of each PAH isomer concentration was cars, especially diesel vehicles.

Keywords

References

  1. Ravindra K, Sokhi R, Grieken RV. Atmospheric polycyclic hydrocarbons : source attribution, emission factors and regulation. Atmos Environ. 2008; 42(13): 2895-2921. https://doi.org/10.1016/j.atmosenv.2007.12.010
  2. Baek SO. Atmospheric polycyclic aromatic hydrocarbons - Environmental implications. J Kor Soc Atmos Envir. 1999; 15(5): 525-544.
  3. Phillips DH. Fifty years of benzo[a]pyrene. Nature. 1983; 303(9): 468-472. https://doi.org/10.1038/303468a0
  4. Gouin T, Mackay D, Jones KC, Harner T, Meijer SN. Evidence for the “grasshopper” effect and fractionation during long-range atmospheric transport of organic contaminants. Environ Pollut. 2004; 128(1-2): 139-148. https://doi.org/10.1016/j.envpol.2003.08.025
  5. Aboal JR, Fernandez JA, Carballeira A. Sampling optimization, at site scale, in contamination monitoring with moss, pine and oak. Environ Pollut. 2001; 115(2): 313-316. https://doi.org/10.1016/S0269-7491(01)00116-6
  6. Leed WA, Steinnes ES, Jones KC. Atmospheric deposition of PCBs to moss (Hylocomium splendens) in norway between 1977 and 1990. Environ Sci Technol. 1996; 30(2): 524-530. https://doi.org/10.1021/es950275s
  7. Wen S, Yang F, Li JG, Gong Y, Zhang XL, Hui Y, et al. Polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) polychlorinated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) monitored by tree bark in an E-waste recycling area. Chemosphere. 2009; 74(7): 981-987. https://doi.org/10.1016/j.chemosphere.2008.10.002
  8. Hauk H, Umlauf G, McLachlan MS. Uptake of gaseous DDE in spruce needles. Environ Sci Technol. 1994; 28(13): 2372-2379. https://doi.org/10.1021/es00062a023
  9. Chun MY, Kim TW. Comparison of regional differences of PCBs concentration using pine needles and soil. J Environ Toxicol. 2009; 24(3): 251-259.
  10. Lim TB, Xu R, Tan B, Obbard JP. Persistent organic pollutants in moss as bioindicators of atmospheric pollution in Singapore. Chemosphere. 2006(4); 64: 596-602. https://doi.org/10.1016/j.chemosphere.2005.11.007
  11. Shoeib M, Harner T. Characterization and comparison of three passive samplers for persistent organic pollutants. Environ Sci Technol. 2002; 36(19): 4142-4151. https://doi.org/10.1021/es020635t
  12. Choi SD, Chang YS. Air monitoring of persistent organic pollutants using passive air samplers. J Kor Soc Atmos Envir. 2005; 21(5): 481-494.
  13. Chun MY. Estimation of PCBs concentrations in ambient air using pine needles as a passive air sampler (PAS). J Environ Health Sci. 2012; 38(4): 360-368. https://doi.org/10.5668/JEHS.2012.38.4.360
  14. Chun MY. A study on the deposition of PCBs in air on coniferous needles. J Kor Soc Environ Engin. 1998; 20(10): 1377-1383.
  15. Chun MY. Characteristics of PCDD/Fs deposited on pine needles. J Kor Soc Environ Engin. 2005; 27(6): 599-605.
  16. Yeo HG, Cho KC, Choi MK, Chun MY, Kim TW. Deposition characteristics of atmospheric PCBs depending on exposure periods using pine needles. J Kor Soc Environ Engin. 2006; 28(8): 836-842.
  17. Chun MY. Sampling rate evaluation of atmospheric PAHs to pine needles for passive air sampler. J Kor Soc Environ analy. 2011; 14(2): 83-88.
  18. Mackay M, Shiu WY, Ma KC. Illustrated handbook of physical-chemical properies and environmental fate for organic chemicals, 2nd ed. USA: CRC Press; 1997. p.250-251.
  19. Mustafa O, Cetin E, Sofuoglu A. Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas-particle partitioning in an urban atmosphere. Atmos Environ. 2006; 40(34): 6615-6625. https://doi.org/10.1016/j.atmosenv.2006.05.051
  20. Ministry of Environment. Annual Report of Ambient Air Quality in Korea, 2011. Sejong: Ministry of Environment Press; 2012. p.439.
  21. Statitics Korea. Korean statistical information service. Available: http://kosis.kr/abroad/abroad_01List.jsp.2012. [accessed 10 May 2013]
  22. Kim TW, Chun MY. Development of analytical method of PAHs deposited on tree leaves. J Kor Soc Environ Analy. 2008; 11(4): 261-267.
  23. Pausch KW, McLachlan MS, Umlauf G. Determination of the principal pathways of polychlorinated dibenzo-p-dioxins and dibenzofurans to Lolium multiflorum(rye grass). Environ Sci Technol. 1995; 29(4): 1090-1098. https://doi.org/10.1021/es00004a031
  24. Gareth T, Sweetman AJ, Ockenden WA, Mackay D, Jones KC. Air-pasture transfer of PCBs. Environ Sci Technol. 1998; 32(7): 936-942. https://doi.org/10.1021/es970761a
  25. Harner T, Bidleman TF. Measurement of octanol-air partition coefficients for polychlorinated biphenyls. J Chem Engineer Data. 1996; 41(4): 895-899. https://doi.org/10.1021/je960097y
  26. Baek SO, Choi JS. Effect of ambient temperature on the distribution of atmospheric concentrations of polycyclic aromatic hydrocarbons in the vapor and particulate phases. J Kor Air Pollution Resear Assoc. 1998; 14(2): 117-131.
  27. Park CU, Yun JS, Eo SM, Shin JS, Kim MY, Sohn JY, et al. Contributive estimation of polycyclic aromatic hydrocarbons by emission source in seoul area. J Kor Soc Atm Environ. 2006; 22(3): 287-295.
  28. Manoli E, Kouras A, Samara C. Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere. 2004; 56(9): 867-878. https://doi.org/10.1016/j.chemosphere.2004.03.013
  29. Rogge WF, Hildemann LM, Mazurek MA, CassGR, Simoneit BRT. Sources of fine organic aerosol.2. Noncatalyst and catalyst-equipped automobilesand heavy-duty diesel trucks. Environ SciTechnol. 1993; 27(4): 636-651. https://doi.org/10.1021/es00041a007
  30. Khalili NR, Scheff PA, Holsen TM. PAH source fingerprints for coke ovens, diesels and gasoline engines, highway tunnels and wood combustion emissions. Atmos Environ. 1995; 29(4): 533-542. https://doi.org/10.1016/1352-2310(94)00275-P
  31. Sicre MA, Marty JC, Saliot A, Aparicio X, Grilmat J, Albaiges J. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmos Environ. 1987; 21(10): 2247-2259. https://doi.org/10.1016/0004-6981(87)90356-8
  32. Yunker MB, Macdonanld RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S. PAH in the Fraser River basin : A critical appraisal of PAH ratio as indicators of PAH source composition. Org Geochem. 2002; 33(4): 489-515. https://doi.org/10.1016/S0146-6380(02)00002-5
  33. Dickhut RM, Canuel EA, Gustafson KE, Liu K, Arzayus KM, Walker SE, et al. Automotive sources of carcinogenic polycyclic aromatics hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ Sci Technol. 2000; 34(21): 4635-4640. https://doi.org/10.1021/es000971e
  34. Li CK, Kamens RM. The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmos Environ. 1993; 27(4): 523-532. https://doi.org/10.1016/0960-1686(93)90209-H
  35. Kavouras IG, Lawrence J, Koutrakis P, Stephanou EG, Oyola P. Measurement of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago de Chile: Source reconciliation and evaluation of sampling artifacts. Atmos Environ. 1999; 33(30): 4977-4986. https://doi.org/10.1016/S1352-2310(99)00281-2
  36. Muendo M, Hanai Y, Kameda Y, Masunaga S. Polycyclic aromatic hydrocarbons in urban air: concentration levels, patterns, and source analysis in Nairobi, Kenya. Environ Forens. 2006; 7(2): 147-157. https://doi.org/10.1080/15275920600667112
  37. Caricchia MA, Chiavarini S, Pezza M. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Environ. 1999; 33(23): 3731-3738. https://doi.org/10.1016/S1352-2310(99)00199-5