DOI QR코드

DOI QR Code

Stress state around cylindrical cavities in transversally isotropic rock mass

  • Lukic, Dragan C. (Faculty of Civil Engineering Subotica, University of Novi Sad) ;
  • Prokic, Aleksandar D. (Faculty of Civil Engineering, University of Belgrade) ;
  • Brcic, Stanko V. (Faculty of Civil Engineering, University of Belgrade)
  • Received : 2013.07.15
  • Accepted : 2013.10.17
  • Published : 2014.03.25

Abstract

The present paper is dealing with the investigation of the stress field around the infinitely long cylindrical cavity, of a circular cross section, contained in the transversally isotropic elastic continuum. Investigation is based upon the determination of the stress function that satisfies the biharmonic equation, for the given boundary conditions and for rotationaly symmetric loading. The solution of the partial differential equation of the problem is given in the form of infinite series of Bessel's functions. Determination of the stress-strain field around cavities is a common requirement for estimation of safety of underground rock excavations.

Keywords

References

  1. Belgrade Lur'e, A.E. (1970), Theory of Elasticity, Moskva, Russia. [In Russian]
  2. Chen, Y.Z. (2004), "Stress analysis of a cylindrical bar with a spherical cavity or rigid inclusion by the eigenfunction expansion variational method", Int. J. Eng. Sci., 42(3-4), 325-338. https://doi.org/10.1016/j.ijengsci.2003.07.001
  3. Chen, T., Hsieh, C.H. and Chuang, P.C. (2003), "A spherical inclusion with inhomogeneous interface in conduction", Chinese J. Mech., A19 (N1), 1-8.
  4. Chen, Y.Z. and Lee, K.Y. (2002), "Solution of flat crack problem by using variational principle and differential-integral equation", Int. J. Solids Struct., 39(23), 5787-5797. https://doi.org/10.1016/S0020-7683(02)00407-9
  5. Dong, C.Y., Lo, S.H. and Cheung, Y.K. (2003), "Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium", Comput. Methods Appl. Mech.Eng., 192(5-6), 683-696. https://doi.org/10.1016/S0045-7825(02)00579-0
  6. Duan, H.L., Wang, J., Huang, Z.P. and Zhong, Y. (2005), "Stress fields of a spheroidal inhomogeneity with an interphase in an infinite medium under remote loadings", Proc. R. Soc.,A, 461(2056), 1055-1080. https://doi.org/10.1098/rspa.2004.1396
  7. Eshelby, J.D. (1959), "The elastic field outside an ellipsoidal inclusion", Proc. Roy. Soc., A 252(1271), 561-569. https://doi.org/10.1098/rspa.1959.0173
  8. Hao, D.H., Luan, M.T., Chen, R. and Wu, K. (2010), "Analysis of cylindrical cavity expansion with Linear softening behavior based on extended SMP criterion", J. Dalian Univ. Tech., 2010-01.
  9. Jabbari, M., Vaghari, A.R., Bahtui, A. and Eslami, M.R. (2008), "Exact solution for asymmetric transient thermal and mechanical stresses in FGM hollow cylinders with heat source", Struct. Eng. Mech., Int. J., 29(5), 551-565. https://doi.org/10.12989/sem.2008.29.5.551
  10. Karinski, Y.S., Yankelevsky, D.Z. and Antes, M.Y. (2009), "Stresses around an underground opening with sharp corners due to non-symmetrical surface loads", Struct. Eng. Mech., Int. J., 31(6), 679-696. https://doi.org/10.12989/sem.2009.31.6.679
  11. Kirsch, G. (1898), "Die theorie der elastizitat und der Bedurfnisse der Festigkeitslchre", Zeitshrift des Vereines deutscher Ingenieure, 42, 797-807.
  12. Klindukhov, V.V. (2009), "Indentation of a smooth axisymmetric punch into a transversely isotopic layer", Mech. Solids, 44(5), 737-743. https://doi.org/10.3103/S0025654409050100
  13. Lazarevic, Dj. and Kujundzic, B. (1954), "Mechanical characteristic of mountain masses", Proceedings of Yugoslav Society of Soil Mechanics and Foundation Engineering, Ljubljana, Yugoslavia, pp. 38-42
  14. Lukic, D., Prokic, A. and Anagnosti, P. (2009), "Stress-strain field around elliptic cavities in elastic continuum", Eur. J. Mech. A/Solids, 28(1), 86-93. https://doi.org/10.1016/j.euromechsol.2008.04.005
  15. Lukic, D., Prokic, A. and Anagnosti, P. (2010), "Stress field around axisymmetric partially supported cavities in elastic continuum-analytical solutions", Struct. Eng. Mech., Int. J., 35(4), 409-430. https://doi.org/10.12989/sem.2010.35.4.409
  16. Lukic, D. (1998), "Contribution to methods of stress state determination around cavity of rotational ellipsoid shape by use of elliptic coordinates", Ph.D. Dissertation, University of Belgrade.
  17. Lur'e, A.E. (1964), Three-Dimensional Problems of the Theory of Elasticity, Theory of Elasticity, Interscience, New Jork.
  18. Malvern, E.L.(1969), Introduction to the Mechanics of a Continuum Medium, Prentice - Hall, Inc.
  19. Markenscoff, X. (1998a), "Inclusions of uniform eigenstrains and constant or other stress dependence", J. Appl. Mech. Trans.ASME, 65(4), 863-866. https://doi.org/10.1115/1.2791923
  20. Markenscoff , X. (1998b), "Inclusions with constant eigenstress", J. Mech. Phys. Solids, 46(12), 2297-2301. https://doi.org/10.1016/S0022-5096(98)00039-8
  21. Neuber, H.(1937), Kerbspannungslehre, Springer-Verlag, Berlin, Germany.
  22. Ou, Z.Y., Wang, G.F. and Wang, T.J. (2008), "Effect of residual surface tension on the stress concentration around a nano-sized spheroidal cavity", Int. J. Eng. Sci., 46(5), 475-485. https://doi.org/10.1016/j.ijengsci.2007.12.008
  23. Ou, Z.Y., Wang, G.F. and Wang, T.J. (2009), "Elastic fields around a nano-sized spheroidal cavity under arbitrary uniform remote loadings", Eur. J. Mech. A./Solids, 28, 110-120. https://doi.org/10.1016/j.euromechsol.2008.05.001
  24. Papkovich, P.F. (1932), "Solution generale des equations differentielles fondamentales d'elasticite, exprimee par trois fonctions harmoniques", Academie des sciences, 195, 513-515.
  25. Podil'chuk, Y.N. (1984), Static Boundary Problems of Elastic Bodies, Naukova Dumka, Kiev, Russia. [In Russian]
  26. Prokopov, V.K. (1949), "Equilibrium of an elastic axisymmetric loaded thick cylinder", Prikl. Mat. Mekh., 13(2), 135-144. [In Russian]
  27. Qi, C.M., Mo, B., Nie, C.L. and Zou, J.F. (2009), "Unified analytical solutions for cylindrical cavity expansion in saturated soil under large deformation and undrained conditions", Chinese J. Rock Mech. Engi., 28(4), 827-833.
  28. Rahman, M. (2002), "The isotropic ellipsoidal inclusion with a polynomial distribution of eigenstrain", J. Appl. Mech., Trans. ASME, 69(5), 593-601. https://doi.org/10.1115/1.1491270
  29. Schiff, M. (1883), "Sur l'equilibre d'un cylindre elastique", J. Liouville, Ser. III, t.IX.
  30. Silvestri, V. and Abou-Samra, G. (2012), "Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified Cam clay", Geomech. Eng., Int. J., 4(1), 19-37. https://doi.org/10.12989/gae.2012.4.1.019
  31. Tomanovic, Z. (2012), "The stress and time dependent behaviour of soft rocks", Gradjevinar, 64(12), 993-1007.
  32. Wang, P.C., Liu, G.B. and Zhu, X.R. (2007), "Solution to cylindrical cavities expansion in elastoplastic brittle materials considering large strain", Rock Soil Mech., 28(3), 587-592.
  33. Watson, G.N. (1922), A Treatise of the Theory of Bessel Functions, Cambridge University Press.
  34. Xue, Y.L., Lou, X.M. and Zhu, Z.W. (2009), "Analysis of the Influence of Initial Radiuson Expansion of Cylindrical Cavities", Chinese J. Underground Space and Engineering, 5(3), 520-524.
  35. Zhang, D.W., Liu, S.Y. and Gu, C.Y. (2009), "Elastoplastic analysis of cylindrical cavityexpansion with anisotropic initial stress", Rock Soil Mech., 30(6), 1631-1634.
  36. Zhang, Z. And Liew, K.M. (2010), "Improved Element-Free Galerkin method (IEFG) for solving three-dimensional elasticity problems", Interact. Multiscale Mech., Int. J., 3(2), 123-143. https://doi.org/10.12989/imm.2010.3.2.123
  37. Zhao, J.D. (2011), "A unified theory for cavity expansion in cohesive-frictional micromorphic media", Int. J. Solid. Struct., 48(9), 1370-1381. https://doi.org/10.1016/j.ijsolstr.2011.01.023
  38. Zou, J.F., Wu, Y.Z., Li, L., Peng, J.G. and Zhang, J.H. (2010), "Unified elastic plastic solution for cylindrical cavity expansion considering large strain and drainage condition", Eng. Mech., 27(6), 1-7.

Cited by

  1. Experimental Testing of Retaining Walls of Precast Elements vol.725-726, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.725-726.168
  2. Stress-Deformation State in the Rock Massif (Illustrated with the Example of Macedonia) vol.725-726, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.725-726.214
  3. Empirical-Statical-Dynamical (ESD) Methodology for Extrapolation of Rock Mass Properties for Construction of Tunnels vol.725-726, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.725-726.349
  4. Influences of seepage force and out-of-plane stress on cavity contracting and tunnel opening vol.13, pp.6, 2014, https://doi.org/10.12989/gae.2017.13.6.907
  5. Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model vol.19, pp.2, 2014, https://doi.org/10.12989/gae.2019.19.2.141