DOI QR코드

DOI QR Code

Optimization of Characteristics of Longitudinal Creepage for Running Stability on Sharp Curved Track

급곡선 주행 안정화를 위한 주행방향 크리피지 특성 최적화 연구

  • Received : 2013.07.14
  • Accepted : 2014.01.13
  • Published : 2014.02.28

Abstract

Urban railway vehicles operate in downtown areas. Due to increases in the number of passengers and changes in the service plans, railway vehicles are expected to operate on sharp curved tracks. However, on these tracks, the running stability of the railway vehicles is significantly decreased and the creepage is increased. Creepage causes the wheel/rail to wear and vibration. Therefore, reducing the creepage helps ensure the running stability and can be beneficial for the environment and cost. In this paper, the longitudinal creepage is analyzed using a railway vehicle model on a sharp curved track. Furthermore, in order to minimize the problems when a railway vehicle runs on a sharp curved track, the characteristics of a bogie are optimized using response optimization.

도시철도는 도심내를 운행하는 철도차량으로써, 도시철도 이용이 활발해지고 운행 계획에 따라 급곡선 구간의 운용이 필요할 것으로 예상된다. 하지만 이러한 급곡선 선로에서는 철도차량의 주행 안정성이 현저히 감소하며 크리피지가 증가하게 된다. 크리피지는 차륜이 레일 위를 구를 때 접촉면에서의 속도차에 의한 미끄러짐 량으로 차륜 마모, 진동 등의 원인이 된다. 따라서 크리피지를 줄이는 것은 주행 안정성 확보 및 환경 문제, 비용 저감에 도움을 줄 수 있다. 본 논문에서는 급곡선 선로 주행에 의한 주행방향 크리피지 발생 정도를 전동차를 모델링하여 분석하고 나아가서 급곡선 선로 주행 시 발생할 수 있는 문제점을 최소화하기 위한 대차 특성을 최적화한다.

Keywords

References

  1. D.T. Eadie, M. Santoro, J. Kalousek (2005) Railway noise and the effect of top of rail liquid friction modifiers: changes in sound and vibration spectral distributions in curves, Transactions on Wear, 258(7-8), pp. 1148-1155. https://doi.org/10.1016/j.wear.2004.03.061
  2. Y. Suda, H. Komine, T. Iwasa, Y. Terumichi (2002) Experimental study on mechanism of rail corrugation using corrugation simulator, Transactions on Wear, 253(1-2), pp. 162-171. https://doi.org/10.1016/S0043-1648(02)00095-9
  3. K.J. Kim, J.K. Park, B.S. Kim, J.C. Kim, (2008) An experimental study of the curve squeal noise, Journal of the Korean Society for Railway, 11(2), pp. 176-181.
  4. M.J. Rudd (1976) Wheel/rail noise-part II: wheel squeal, Journal of Sound and Vibration, 46, pp. 381-394. https://doi.org/10.1016/0022-460X(76)90862-2
  5. A.D. Monk-Steel, F.G. Thompson, M.H.A. Janssens (2006) An investigation into the influence of longitudinal creepage on railway squeal noise due to lateral creepage, Journal of Sound and Vibration, 293, pp. 766-776. https://doi.org/10.1016/j.jsv.2005.12.004
  6. G.E.P. Box, K.B. Wilson (1951) On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society: Series B, 13(1), pp. 1-45.
  7. K.J. Craig, N. Stander, D.A. Dooge, S. Varadappa (2005) Automotive crashworthiness design using response surfacebased variable screening and optimization, International Journal for Computer-aided Engineering and Software, 22(1), pp. 38-61. https://doi.org/10.1108/02644400510572406
  8. C.W. Choi, J.W. Jin, K.W. Kang (2012) Structural optimization for small scale vertical-axis wind turbine blade using response surface method, The KSFM journal of fluid machinery, 16(4), pp. 22-27. https://doi.org/10.5293/kfma.2013.16.4.022
  9. J.W. Jang, S.G. Baek, S.W. Lee, Y.S. Choi, J.C. Koo (2010) Optimization of the suspension to improve ride comfort using response surface model for high speed train, Proceedings Autumn of Korean Society of Mechanical Engineers, Rep. of Korea, pp. 1234-1237.
  10. J.J. Karker (1983) A simplified theory for non-hertzian contact, Vehicle System Dynamics, 12(1-3), pp. 43-45. https://doi.org/10.1080/00423118308968716
  11. A.A. Shabana, K.E. Zaazaa, H. Sugiyama (2008) Railroad vehicle dynamics: a computational approach, CRC Press, NW USA, pp. 140-145.
  12. M. Rosenberger, P. Dietmaier, J. Payer, K. Six (2008) The influence of the wheelsets relative kinematics of railway vehicles on wheel/rail wear in curved track, Vehicle system dynamics, 46, pp. 403-414. https://doi.org/10.1080/00423110801979242
  13. MINITAB statistical manual, Minitab INC.
  14. T.H. Lee, J.J. Jung, S. Hong, H.W. Kim, J.S. Choi (2006) Statistical analysis and prediction for behaviors of tracked vehicle traveling on soft soil using response surface methodology, Transactions of Korean Society of Ocean Engineers, 20(3), pp. 54-60.
  15. R.V. Dukkipati, S.N. Swamy, M.O.M. Osman (1992) Independently rotating wheel systems for railway vehicles-a state of the art review, Vehicle System Dynamics, 21, pp. 297-330. https://doi.org/10.1080/00423119208969013
  16. T.X. Mei, R.M. Goodall (2003) Recent development in active steering of railway vehicles, Vehicle system dynamics, 39(6), pp. 415-436. https://doi.org/10.1076/vesd.39.6.415.14594

Cited by

  1. Study of the active radial steering of a railway vehicle using the curvature measuring method vol.28, pp.11, 2014, https://doi.org/10.1007/s12206-014-1026-1