References
- D.T. Eadie, M. Santoro, J. Kalousek (2005) Railway noise and the effect of top of rail liquid friction modifiers: changes in sound and vibration spectral distributions in curves, Transactions on Wear, 258(7-8), pp. 1148-1155. https://doi.org/10.1016/j.wear.2004.03.061
- Y. Suda, H. Komine, T. Iwasa, Y. Terumichi (2002) Experimental study on mechanism of rail corrugation using corrugation simulator, Transactions on Wear, 253(1-2), pp. 162-171. https://doi.org/10.1016/S0043-1648(02)00095-9
- K.J. Kim, J.K. Park, B.S. Kim, J.C. Kim, (2008) An experimental study of the curve squeal noise, Journal of the Korean Society for Railway, 11(2), pp. 176-181.
- M.J. Rudd (1976) Wheel/rail noise-part II: wheel squeal, Journal of Sound and Vibration, 46, pp. 381-394. https://doi.org/10.1016/0022-460X(76)90862-2
- A.D. Monk-Steel, F.G. Thompson, M.H.A. Janssens (2006) An investigation into the influence of longitudinal creepage on railway squeal noise due to lateral creepage, Journal of Sound and Vibration, 293, pp. 766-776. https://doi.org/10.1016/j.jsv.2005.12.004
- G.E.P. Box, K.B. Wilson (1951) On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society: Series B, 13(1), pp. 1-45.
- K.J. Craig, N. Stander, D.A. Dooge, S. Varadappa (2005) Automotive crashworthiness design using response surfacebased variable screening and optimization, International Journal for Computer-aided Engineering and Software, 22(1), pp. 38-61. https://doi.org/10.1108/02644400510572406
- C.W. Choi, J.W. Jin, K.W. Kang (2012) Structural optimization for small scale vertical-axis wind turbine blade using response surface method, The KSFM journal of fluid machinery, 16(4), pp. 22-27. https://doi.org/10.5293/kfma.2013.16.4.022
- J.W. Jang, S.G. Baek, S.W. Lee, Y.S. Choi, J.C. Koo (2010) Optimization of the suspension to improve ride comfort using response surface model for high speed train, Proceedings Autumn of Korean Society of Mechanical Engineers, Rep. of Korea, pp. 1234-1237.
- J.J. Karker (1983) A simplified theory for non-hertzian contact, Vehicle System Dynamics, 12(1-3), pp. 43-45. https://doi.org/10.1080/00423118308968716
- A.A. Shabana, K.E. Zaazaa, H. Sugiyama (2008) Railroad vehicle dynamics: a computational approach, CRC Press, NW USA, pp. 140-145.
- M. Rosenberger, P. Dietmaier, J. Payer, K. Six (2008) The influence of the wheelsets relative kinematics of railway vehicles on wheel/rail wear in curved track, Vehicle system dynamics, 46, pp. 403-414. https://doi.org/10.1080/00423110801979242
- MINITAB statistical manual, Minitab INC.
- T.H. Lee, J.J. Jung, S. Hong, H.W. Kim, J.S. Choi (2006) Statistical analysis and prediction for behaviors of tracked vehicle traveling on soft soil using response surface methodology, Transactions of Korean Society of Ocean Engineers, 20(3), pp. 54-60.
- R.V. Dukkipati, S.N. Swamy, M.O.M. Osman (1992) Independently rotating wheel systems for railway vehicles-a state of the art review, Vehicle System Dynamics, 21, pp. 297-330. https://doi.org/10.1080/00423119208969013
- T.X. Mei, R.M. Goodall (2003) Recent development in active steering of railway vehicles, Vehicle system dynamics, 39(6), pp. 415-436. https://doi.org/10.1076/vesd.39.6.415.14594
Cited by
- Study of the active radial steering of a railway vehicle using the curvature measuring method vol.28, pp.11, 2014, https://doi.org/10.1007/s12206-014-1026-1