DOI QR코드

DOI QR Code

Predictions for Progressively Type-II Censored Failure Times from the Half Triangle Distribution

  • Received : 2013.11.05
  • Accepted : 2013.12.22
  • Published : 2014.01.31

Abstract

This paper deals with the problem of predicting censored data in a half triangle distribution with an unknown parameter based on progressively Type-II censored samples. We derive maximum likelihood predictors and some approximate maximum likelihood predictors of censored failure times in a progressively Type-II censoring scheme. In addition, we construct the shortest-length predictive intervals for censored failure times. Finally, Monte Carlo simulations are used to assess the validity of the proposed methods.

Keywords

References

  1. Asgharzadeh, A. and Valiollahi, R. (2010). Prediction intervals for proportional hazard rate models based on progressively Type-II censored samples, Communications of the Korean Statistical Society, 17, 99-106. https://doi.org/10.5351/CKSS.2010.17.1.099
  2. Balakrishnan, N. and Nevzorov, V. B. (2003). A Primer on Statistical Distribution, John Willey & Stone, New York.
  3. Balakrishnan, N. and Sandhu, R. A. (1995). A simple simulational algorithm for generating progres-sive Type-II censored samples, The American Statistician, 49, 229-230.
  4. Balakrishnan, N., Kannan, N., Lin, C. T. and Ng, H. K. T. (2003). Point and interval estimation for Gaussian distribution based on progressively Type-II censored samples, IEEE Transactions on Reliability, 52, 90-95. https://doi.org/10.1109/TR.2002.805786
  5. Basak, I. and Balakrishnan, N. (2009). Predictors of failure times of censored units in progressively censored samples form normal distribution, Sankhya Series B, Part 2, 71, 222-247.
  6. Han, J. T. and Kang, S. B. (2008). Estimation for the half triangle distribution based on progressively Type-II censored samples, Journal of the Korean Data & Information Science Society, 19, 951-957.
  7. Johnson, D. (1997). The triangular distribution as a proxy for the beta distribution in risk analysis, The Statistician, 46, 387-398.
  8. Juola, R. C. (1993). More on shortest confidence intervals, The American Statistician, 47, 117-119.
  9. Kang, S. B. (2007). Estimation in a half triangle distribution based on multiply Type-II censored samples, Journal of the Korean Data & Information Science Society, 18, 793-801.
  10. Kang, S. B., Cho, Y. S. and Han, J. T. (2008). Estimation for the half logistic distribution under progressively Type-II censoring, Communications of the Korean Statistical Society, 15, 815-823. https://doi.org/10.5351/CKSS.2008.15.6.815
  11. Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half triangle distribution based on Type-I hybrid censored samples, Journal of the Korean Data & Information Science Society, 20, 961-969.
  12. Kang, S. B. and Seo, J. I. (2011). Estimation in an exponentiated half logistic distribution under progressively Type-II censoring, Communications of the Korean Statistical Society, 18, 657-666. https://doi.org/10.5351/CKSS.2011.18.5.657
  13. Raqab, M. Z., Asgharzadeh. A. and Valiollahi, R. (2010). Prediction for Pareto distribution based on progressively Type-II censored samples, Computational Statistics and Data Analysis, 54, 1732-1743. https://doi.org/10.1016/j.csda.2010.02.005

Cited by

  1. Type-II stepwise progressive censoring vol.23, pp.1, 2016, https://doi.org/10.5351/CSAM.2016.23.1.057