DOI QR코드

DOI QR Code

랜덤화 블록 계획법에서 순서대립가설에 대한 비모수검정법

Nonparametric Method for Ordered Alternative in Randomized Block Design

  • 강유향 (가톨릭대학교 의학통계학과) ;
  • 김동재 (가톨릭대학교 의학통계학과)
  • Kang, Yuhyang (Department of Biostatistics, The Catholic University of Korea) ;
  • Kim, Dongjae (Department of Biostatistics, The Catholic University of Korea)
  • 투고 : 2013.10.15
  • 심사 : 2013.11.15
  • 발행 : 2014.02.28

초록

랜덤화 블록 계획법은 동질적인 실험단위를 묶어 여러 개의 블록으로 나눈 후, 각 블록의 실험단위에 처리를 적용하는 방법이다. 랜덤화 블록 계획법에서 Jonkckheere (1964)와 Terpstra (1952), Page (1963) 그리고 Hollander (1967) 등이 순서대립가설의 다양한 방법을 제안하였다. 특히, 블록 내 순위합의 가중치를 주는 방법으로 Page (1963) 검정법이 있다. 본 논문에서는 Page 검정을 확장하여 순서대립가설에 새로운 비모수적 방법론을 제안하였다. 또한, 몬테카를로 모의시험 연구를 통해 제안된 방법과 이전의 방법들의 검정력을 비교하였다.

A randomized block design is a method to apply a treatment into the experimental unit of each block after dividing into several blocks with a binded homogeneous experimental unit. Jonckheere (1964) and Terpstra (1952), Page (1963), Hollander (1967) proposed various methods of ordered alternative in randomized block design. Especially, Page (1963) test is a weighted combination of within block rank sums for ordered alternatives. In this paper, we suggest a new nonparametric method expanding the Page test for an ordered alternative. A Monte Carlo simulation study is also adapted to compare the power of the proposed methods with previous methods.

키워드

참고문헌

  1. Hettmansperger, T. P. (1975). Non-parametric inference for ordered alternatives in a randomized block design, Psychometrika, 40, 53-62. https://doi.org/10.1007/BF02291479
  2. Hollander, M. (1967). Rank tests for randomized blocks when the alternatives have an a priori ordering, Annals of Mathematical Statistics, 37, 735-738.
  3. Jonckheere, A. R. (1954). A distribution-free k-sample test against ordered alternatives, Biometrika, 41, 133-145. https://doi.org/10.1093/biomet/41.1-2.133
  4. Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis, Journals of the American Statistical Association, 47, 583-621. https://doi.org/10.1080/01621459.1952.10483441
  5. Lee, G. (1991). Non-parametric method comparison study for ordered alternatives, Psychometrika, 20, 197-207.
  6. Mack, G. A. (1981). A quick and easy distribution-free test for main effects in a two factor ANOVA, Communications in Statistics - Simulation and Computation, 10, 571-591. https://doi.org/10.1080/03610918108812236
  7. Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of the two random variables is stochastically larger than the other, The annals of Mathematical Statistics, 18, 50-60. https://doi.org/10.1214/aoms/1177730491
  8. Page, E. B. (1963). Ordered hypotheses for multiple treatments : A significance test for linear ranks, Journals of the American Statistical Association, 58, 216-230. https://doi.org/10.1080/01621459.1963.10500843
  9. Randles, R. H., and Wolfe, D. A. (1979). Introduction to the Theory of Nonparametric Statistics, John Wiley, New York.
  10. Skillings, J. H. and Wolfe, D. A. (1977). Testing for ordered alternatives by combining independent distribution-free block statistics, Communications in Statistics-Theory and Methods, 6, 1453-1463. https://doi.org/10.1080/03610927708827588
  11. Skillings, J. H. and Wolfe, D. A. (1978). Distribution-free tests for ordered alternatives in a randomized block design, Journals of the American Statistical Association, 73, 427-431. https://doi.org/10.1080/01621459.1978.10481595
  12. Song, M., Park, C. and Lee, J. (2007). Non-Parametric Statistics using S-LINK, Freeca.
  13. Terpstra, T. J. (1952). The asymptotic normality and consistency of Kendall's test against trend, when ties are present in one ranking, Indagationes Mathematicae, 14, 327-333.