References
- ANSYS, Inc. (2011), ANSYS mechanical APDL Rotordynamic Analysis Guide, ANSYS Release 14.0, Canonsburg, USA.
- Antoulas, A.C., Sorensen, D.C. and Gugercin, S. (2001), "A survey of model reduction methods for large-scale systems", Contemp. Math., 280, 193-219. https://doi.org/10.1090/conm/280/04630
- Bai, Z. (2002), "Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems", Appl. Numer. Math., 43, 9-44. https://doi.org/10.1016/S0168-9274(02)00116-2
- Casciati, S. and Faravelli, L. (2014), "Quantity vs. quality in the Model Order Reduction (MOR) of a linear system", Smart Struct. Syst., 13(1), 99-109. https://doi.org/10.12989/sss.2014.13.1.099
- Chiang, H.W.D., Kuan, C.P. and Li, H.L. (2009), "Turbomolecular pump rotor-bearing system analysis and testing", J. Vac. Sci. Technol. A, 27(5), 1196-1203. https://doi.org/10.1116/1.3179157
- Craig, R.R. and Bampton, M.C. (1968), "Coupling of substructures for dynamics analysis", AIAA J., 6, 1313-1319. https://doi.org/10.2514/3.4741
- Das, A.S. and Dutt, J.K. (2008), "Reduced model of a rotor-shaft system using modified SEREP", Mech. Res. Commun., 35(6), 398-407.
- Eid, R., Salimbahrami, B., Lohmann, B., Rudnyi, E. and Korvink, J. (2007), "Parametric order reduction of proportionally damped second-order systems", Sens. Mater., 19(3), 149-164.
- Freund, R.W. (2000), "Krylov-subspace methods for reduced-order modeling in circuit simulation", J. Comput. Appl. Math., 123, 395-421. https://doi.org/10.1016/S0377-0427(00)00396-4
- Glasgow, D.A. and Nelson, H.D. (1980), "Stability analysis of rotor-bearing systems using component mode synthesis", J. Mech. Des., Tran. ASME, 102(2), 352-359. https://doi.org/10.1115/1.3254751
- Gugercin, S and Antoulas, A.C. (2004), "A survey of model reduction by balanced truncation and some new results", Int. J. Control, 77(8), 748-766. https://doi.org/10.1080/00207170410001713448
- Guyader, J.L. (2009), "Characterization and reduction of dynamic models of vibrating systems with high modal density", J. Sound Vib., 328(4-5), 488-506. https://doi.org/10.1016/j.jsv.2009.08.012
- Guyan, R.J. (1965), "Reduction of stiffness and mass matrices", AIAA J., 3, 380. https://doi.org/10.2514/3.2874
- Han, J.S. (2012), "Efficient frequency response and its direct sensitivity analyses for large-size finite element models using Krylov subspace-based model order reduction", J. Mech. Sci. Tech., 26(4), 1115-1126. https://doi.org/10.1007/s12206-012-0227-8
- Han, J.S. (2013), "Calculation of design sensitivity for large-size transient dynamic problems using Krylov subspace-based model order reduction", J. Mech. Sci. Tech., 27(9), 2789-2800. https://doi.org/10.1007/s12206-013-0726-2
- Khulief, Y.A. and Mohiuddin, M.A. (1997), "On the dynamic analysis of rotors using modal reduction", Finite Elem. Anal. Des., 26, 41-55. https://doi.org/10.1016/S0168-874X(96)00070-4
- Kim, Y.D. and Lee, C.W. (1986), "Finite element analysis of rotor bearing systems using a modal transformation matrix", J. Sound Vib., 111(3), 441-456. https://doi.org/10.1016/S0022-460X(86)81403-1
- Mohiuddin, M.A., Bettayeb, M. and Khulief, Y.A. (1998), "Dynamic analysis and reduced order modelling of flexible rotor-bearing systems", Comput. Struct., 69(3), 349-359. https://doi.org/10.1016/S0045-7949(98)00129-1
- Moore, B.C. (1981), "Principal component analysis in linear systems-controllability observability and model reduction", IEEE Tran. Auto. Control, 26(1), 17-2. https://doi.org/10.1109/TAC.1981.1102568
- Nelson, F.C. (2007), "Rotor dynamics without equations", Int. J. Condition Monit. Diag. Eng. Manage., 10(3), 2-10.
- Nelson, H.D. and McVaugh, J.M. (1976), "The dynamics of rotor-bearing systems using finite elements", J. Eng. Indus., 98, 593-600. https://doi.org/10.1115/1.3438942
- Qu, Z. (2004), Model Order Reduction Techniques, Springer, New York, NY, USA.
- Rouch, K.E. and Kao, J.S. (1980), "Dynamic reduction in rotor dynamics by the finite element method", J. Mech. Des., Tran. ASME, 102(2), 360-368. https://doi.org/10.1115/1.3254752
- Rudnyi, E. and Korvink, J. (2006), "Model order reduction for large scale engineering models developed in ANSYS", Lecture Note. Comput. Sci., 3732, 349-356.
- Sawicki, J.T. and Gawronski, W.K. (1997), "Balanced model reduction and control of rotor-bearing systems", J. Eng. Gas Turb. Pow., 119(2), 456-463. https://doi.org/10.1115/1.2815596
- Shanmugam, A. and Padmanabhan, C. (2006), "A fixed-free interface component mode synthesis method for rotordynamic analysis", J. Sound Vib., 297(3-5), 664-679. https://doi.org/10.1016/j.jsv.2006.04.011
- The MathWorks, Inc. (2011), MATLAB Getting Started Guide, Natick, USA.
- Wagner, M.B., Younan, A., Allaire, P. and Cogill, R. (2010), "Model reduction methods for rotor dynamic analysis: a survey and review", Int. J. Rotat. Mach., 2010, 1-17.
- Wang, W. and Kirkhope, J. (1994a), "New eigensolutions and modal analysis for gyroscopic/rotor systems - part 1: undamped systems", J. Sound Vib., 175(2), 159-170. https://doi.org/10.1006/jsvi.1994.1320
- Wang, W. and Kirkhope, J. (1994b), "Component mode synthesis for damped rotor systems with hybrid interfaces", J. Sound Vib., 177(3), 393-410. https://doi.org/10.1006/jsvi.1994.1442
- Wang, W. and Kirkhope, J. (1995), "Complex component mode synthesis for damped systems", J. Sound Vib., 181(5), 781-800. https://doi.org/10.1006/jsvi.1995.0171
- Wang, G., Sreeram, V. and Liu, W.Q. (1999), "A new frequency weighted balanced truncation method and an error bound", IEEE Tran. Auto. Control, 44(9), 1734-1737. https://doi.org/10.1109/9.788542
- Wilson, E.L. (1985), "A new method of dynamic analysis for linear and nonlinear systems", Finite Elem. Anal. Des., 1, 21-23. https://doi.org/10.1016/0168-874X(85)90004-6
Cited by
- Automated static condensation method for local analysis of large finite element models vol.61, pp.6, 2014, https://doi.org/10.12989/sem.2017.61.6.807
- Structural modal reanalysis using automated matrix permutation and substructuring vol.69, pp.1, 2014, https://doi.org/10.12989/sem.2019.69.1.105
- Comparison of model order reductions using Krylov and modal vectors for transient analysis under seismic loading vol.76, pp.5, 2014, https://doi.org/10.12989/sem.2020.76.5.643