DOI QR코드

DOI QR Code

The Occurrence and Origin of a Syn-collisional Mélange in Timor

티모르섬 충돌 동시성 멜란지의 산상 및 기원

  • 박승익 (한국지질자원연구원 국토지질연구본부) ;
  • 고희재 (한국지질자원연구원 국토지질연구본부) ;
  • 김성원 (한국지질자원연구원 국토지질연구본부) ;
  • 김유홍 (한국지질자원연구원 국토지질연구본부)
  • Received : 2013.10.07
  • Accepted : 2013.12.26
  • Published : 2014.02.28

Abstract

The Bobonaro m$\acute{e}$lange is one of the youngest syn-collisional m$\acute{e}$langes, located between the Indo-Australian and Eurasian plates. The m$\acute{e}$lange has formed in association with a collision between the Australian continental margin and the Banda arc initiated in Neogene. The Suai area at the southern part of Timor is a good place to examine the genetic relationship between the m$\acute{e}$lange and other rock sequences because various tectonostratigraphic units coexist in the area. In this study, we present the structural characteristics and spatial distribution of the Bobonaro m$\acute{e}$lange investigated as a part of 1:25K scale geologic mapping in the area, and discuss on the origin of the m$\acute{e}$lange. The Bobonaro m$\acute{e}$lange in the Suai area is composed of unmetamorphosed clay matrix and blocks of various lithologies. The clay matrix mainly is reddish brown or greenish gray in colour, and has scaly texture. Most blocks are allochthonous, but mostly derived from nearby formations. Based on the internal structure and relationship with surrounding rocks, the Bobonaro m$\acute{e}$lange is genetically classified into 1) diapiric m$\acute{e}$lange; 2) tectonic m$\acute{e}$lange; and 3) broken formation. The spatial distribution of the Bobonaro m$\acute{e}$lange indicates that it intruded all pre-collisional units including the lower Australian continental margin unit(Gondwana megasequence) and the Banda arc unit. Taking the field evidences and previous genetic models into consideration, the Bobonaro m$\acute{e}$lange is interpreted to be mainly formed as a diapiric m$\acute{e}$lange originated from Gondwana megasequence, consistently effected by faulting events. This study reflects that diapiric m$\acute{e}$lange is a significant component in recent accretionay-collision belts. It suggests that diapiric process should be considered as a main genetic factor even in ancient m$\acute{e}$lange.

보보나로 멜란지는 인도-호주판과 유라시아판의 경계부에 위치한 세계적으로 가장 젊은 충돌 동시성 멜란지 중 하나이다. 이 멜란지는 신제3기에 시작된 호주 대륙의 연변부와 반다 호와의 충돌로 인해 형성되었으며, 티모르섬의 전역에 걸쳐 분포한다. 티모르섬 남부 수아이 지역은 호주 대륙 기원 암체, 반다 호 기원 암체, 충돌 동시성 보보나로 멜란지, 그리고 충돌 동시성 퇴적층까지 다양한 지층들이 분포하고 있어, 멜란지와 다른 지구조 단위의 기원적 상관관계를 파악하는데 적합한 지역이다. 본 연구에서는 수아이 지역에서 수행한 1:25,000 규모의 정밀 지질조사 결과를 토대로 보보나로 멜란지의 내부 구조적 특성 및 공간적 분포 양상을 제시하고 그 기원에 대해 토의한다. 수아이 지역에 분포하는 보보나로 멜란지는 주로 적갈색 및 녹회색을 띠며 변성작용을 받지 않은 비늘모양 점토 기질과 대부분 인접한 지역의 지층들에서 유래한 다양한 종류의 암편들로 구성된다. 주변암과의 관계가 비교적 명확한 멜란지 노두에서 인지되는 내부 구조적 특징은 보보나로 멜란지가 '다이아피릭 멜란지', '지구조 멜란지' 그리고 혼합 과정 없이 지층교란에 의해 형성된 '깨진 지층'으로 구성됨을 지시한다. 또한 공간적 분포 특성은 보보나로 멜란지가 호주 대륙기원 암체 하부의 곤드와나 대지층군과 더불어 이를 충상하는 반다 호 기원 지층들까지 모두 절단하며 관입하고 있음을 나타낸다. 연구지역에서 파악되는 노두 규모의 내부 구조적 특징 및 광역적 분포 특성을 기존에 제시된 멜란지 형성 모델들과 결부하여 고려하였을 때, 보보나로 멜란지는 대부분 곤드와나 대지층군으로부터 점토물질이 유래한 다이아피릭 멜란지로 형성되었으며 멜란지의 형성 및 진화에 단층활동이 지속적으로 영향을 미친 것으로 판단된다. 본 연구 결과는 현생 부가체-충돌대에서 다이아피릭 멜란지가 주요한 구성 요소임을 잘 보여준다. 이는 오래된 부가체-충돌대에 발달하는 멜란지의 기원을 해석함에 있어서도 다이아피릭 프로세스를 주요한 인자로 고려해야함을 지시한다.

Keywords

References

  1. Aalto, K.R. (1981) Multistage melange formation in the Franciscan Complex, northernmost California. Geology, v.9, p.602-607. https://doi.org/10.1130/0091-7613(1981)9<602:MMFITF>2.0.CO;2
  2. Audley-Charles, M.G. (1965) A Miocene gravity deposit from eastern Timor. Geological Magazine, v.102, p.267-276. https://doi.org/10.1017/S0016756800053309
  3. Audley-Charles, M.G., (1968) The geology of Portuguese Timor. Geological Society of London Memoir, v.4, 76p.
  4. Audley-Charles, M.G. (2004) Ocean trench blocked and obliterated by Banda forearc collision with Australian proximal continental slope. Tectonophysics, v.389, p.65-79. https://doi.org/10.1016/j.tecto.2004.07.048
  5. Bai, T. and Pollard, D.D. (2000) Fracture spacing in layered rocks: a new explanation based on the stress transition. Journal of Structural Geology, v.22, p.43-57. https://doi.org/10.1016/S0191-8141(99)00137-6
  6. Bai, T., Pollard, D.D. and Gao, H. (2000) Explanation for fracture spacing in layered materials. Nature, v.403, p.753-756. https://doi.org/10.1038/35001550
  7. Barber, A.J. (2013) The origin of melanges: cautionary tales from Indonesia. Journal of Asian Earth Sciences, doi: http://dx.doi.org/10.1016/j.jseaes.2012.12.021.
  8. Barber, A.J., Tjokrosapoetro, S. and Charlton, T.R. (1986) Mud volcanoes, shale diapirs, wrench faults and melange in accretionary complexes, eastern Indonesia. American Association of Petroleum Geologists Bulletin, v.70, p.1729-1741.
  9. Boles, J.R. and Landis, C.A. (1984) Jurassic sedimentary melange and associated facies, Baja California, Mexico. Geological Society of America Bulletin, v.95, p.513-521. https://doi.org/10.1130/0016-7606(1984)95<513:JSMAAF>2.0.CO;2
  10. Brandon, M.T. (1989) Deformational styles in a sequence of olistostromal melanges, Pacific Rim Complex, western Vancouver Island, Canada. Geological Society of America Bulletin, v.101, p.1520-1542. https://doi.org/10.1130/0016-7606(1989)101<1520:DSIASO>2.3.CO;2
  11. Brown, D., Ryan, P.D., Afonso, J.C., Boutelier, D., Burg, J.P., Byrne, T., Calvert, A., Cook, F., DeBari, S., Dewey, J.F., Gerya, T.V., Harris, R., Herrington, R., Konstantinovskaya, E., Reston, T. and Zagorevski, A. (2011) Arc-Continent Collision: The Making of an Orogen. In Brown, D. and Ryan, P.D., (ed.) Arc-Continent Collision. Springer, p.477-493.
  12. Charlton, T.R. (1989) Stratigraphic correlation across an arc-continent collision zone: Timor and the Australian Northwest Shelf. Australian Journal of Earth Sciences, v.36, p.263-274. https://doi.org/10.1080/08120098908729485
  13. Charlton, T.R. (2002) The structural setting and tectonic significance of the Lolotoi, Laclubar and Aileu metamorphic massifs, Timor Leste. Journal of Asian Earth Sciences, v.20, p.851-865. https://doi.org/10.1016/S1367-9120(01)00075-X
  14. Charlton, T.R., Barber, A.J. and Barkham, S.T. (1991) The structural evolution of the Timor collision complex, eastern Indonesia. Journal of Structural Geology, v.13, p.489-500. https://doi.org/10.1016/0191-8141(91)90039-L
  15. Charlton, T.R., Barber, A.J., Harris, R.A., Barkham, S.T., Bird P.R., Archbold, N.W., Morris, N.J., Nicoll, R.S., Owen, H.G., Owen, R.M., Sorauf, J.E., Taylor, P.D., Webster, G.D. and Whittaker, J.E (2002) The Permian of Timor; stratigraphy, palaeontology and palaeogeography. Journal of Asian Earth Sciences, v.20, p.719-774. https://doi.org/10.1016/S1367-9120(02)00018-4
  16. Charlton, T.R., Barber, A.J., McGowan, A.J., Nicoll, R.S., Roniewicz, E., Cook, S.E., Barkham, S.T. and Bird, P.R. (2009) The Triassic of Timor: Lithostratigraphy, chronostratigraphy and palaeogeography, Journal of Asian Earth Sciences, v.36, p.341-363. https://doi.org/10.1016/j.jseaes.2009.06.004
  17. Charlton, T.R., Barber, A.J., McGowan, A.J., Nicoll, R.S., Roniewicz, E., Cook, S.E., Barkham, S.T. and Bird, P.R. (2009) The Triassic of Timor: Lithostratigraphy, chronostratigraphy and palaeogeography, Journal of Asian Earth Sciences, v.36, p.341-363. https://doi.org/10.1016/j.jseaes.2009.06.004
  18. Cloos, M. (1984) Flow melanges and the structural evolution of accretionary wedges. Geological Society of America Special Papers, v.198, p.71-80. https://doi.org/10.1130/SPE198-p71
  19. Cloos, M. (1985) Thermal evolution of convergent plate margins: thermal modelling and re-evaluation of isotopic Ar-ages for blueschists in the Franciscan Complex of California. Tectonics, v.4, p.421-433. https://doi.org/10.1029/TC004i005p00421
  20. Cloos, M. and Shreve, R.L. (1988a) Subduction-Channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure and Applied Geophysics, v.128, p.455-500. https://doi.org/10.1007/BF00874548
  21. Cloos, M. and Shreve, R.L. (1988b) Subduction-Channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion. Pure and Applied Geophysics, v.128, p.501-545. https://doi.org/10.1007/BF00874549
  22. Codegone, G., Festa, A., Dilek, Y. and Pini, G.A. (2012) Small-scale polygenetic melanges in the Ligurian accretionary complex, Northern Apennines, Italy, and the role of shale diapirism in superposed melange evolution in orogenic belts. Tectonophysics, v.568-569, p.170-184. https://doi.org/10.1016/j.tecto.2012.02.003
  23. Cowan, D.S. (1985) Structural styles in Mesozoic and Cenozoic melanges in the western Cordillera of North America. Geological Society of America Bulletin, v.96, p.451-462. https://doi.org/10.1130/0016-7606(1985)96<451:SSIMAC>2.0.CO;2
  24. Dilek, Y. (1989) Structure and tectonics of an Early Mesozoic oceanic basement in the northern Sierra Nevada Metamorphic Belt, California: evidence for transform faulting and ensimatic arc evolution. Tectonics, v.8, p.999-1014. https://doi.org/10.1029/TC008i005p00999
  25. Festa, A., Dilek, Y., Pini, G.A., Codegone, G. and Ogata, K. (2012) Mechanisms and processes of stratal disruption and mixing in the development of melanges and broken formations: Redefining and classifying melanges. Tectonophysics, v.568-569, p.7-24. https://doi.org/10.1016/j.tecto.2012.05.021
  26. Festa, A., Pini, G.A., Dilek, Y. and Codegone, G. (2010) Melanges and melange-forming processes: a historical overview and new concepts. International Geology Review, v.52, p.1040-1105. https://doi.org/10.1080/00206810903557704
  27. Greenly, E., (1919) The Geology of Anglesey (2 volumes). Memoirs of the Geological Survey of Great Britain, 980p.
  28. Gross, M.R. (1993) The origin and spacing of cross joints: examples from Monterey Formation, Santa Barbara Coastline, California. Journal of Structural Geology, v.15, p.737-751. https://doi.org/10.1016/0191-8141(93)90059-J
  29. Haig, D.W. and McCartain, E. (2007) Carbonate pelagites in the post-Gondwana succession (Cretaceous-Neogene) of East Timor. Australian Journal of Earth Sciences, v.54, p.875-897. https://doi.org/10.1080/08120090701392739
  30. Hamilton, W. (1979) Tectonics of the Indonesian Region. U.S.G.S. Professional Paper, v.1078, 345p.
  31. Harris, R.A. (1991) Temporal distribution of strain in the active Banda Orogen. A reconciliation of rival hypotheses. Journal of Southeast Asian Earth Sciences, v.6, p.373-386. https://doi.org/10.1016/0743-9547(91)90082-9
  32. Harris, R.A. (2006) Rise and fall of the Eastern Great Indonesian arc recorded by the assembly, dispersion and accretion of the Banda Terrane, Timor. Gondwana Research, v.10, p.207-231 https://doi.org/10.1016/j.gr.2006.05.010
  33. Harris, R.A. (2011) The Nature of the Banda Arc-Continent Collision in the Timor Region. In Brown, D. and Ryan, P.D., (ed.) Arc-Continent Collision. Springer, p.163-211.
  34. Harris, R.A. and Long, T. (2000) The Timor ophiolite, Indonesia. Model or myth? In Dilek, Y., Moores, E.M., Elthon, D. and Nicolas, A., (ed.) Ophiolites and oceanic crust. New insights from field studies and the Ocean Drilling Program. Geological Society of America Special Paper, v.349, p.321-330.
  35. Harris, R.A., Sawyer, R.K. and Audley-Charles M.G. (1998) Collisional melange development: geologic associations of active melange-forming processes with exhumed melange facies in the western Banda orogen, Indonesia. Tectonics, v.17, p.458-480. https://doi.org/10.1029/97TC03083
  36. Hall, R. (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computerbased reconstructions, model and animations. Journal of Asian Earth Sciences, v.20, p.353-431. https://doi.org/10.1016/S1367-9120(01)00069-4
  37. Hobbs, D.W. (1967) The formation of tension joints in sedimentary rocks: an explanation. Geological Magazine, v.104, p.550-556. https://doi.org/10.1017/S0016756800050226
  38. Hsu, K.J., 1968, Principles of melanges and their bearing on the Franciscan-Knoxville paradox. Geological Society of America Bulletin, 79, 1063-1074. https://doi.org/10.1130/0016-7606(1968)79[1063:POMATB]2.0.CO;2
  39. Hutchison, C.S. (2007) Geological Evolution of South- East Asia. 2nd (ed.), Geological Society of Malaysia, Kuala Lumpur, 392p.
  40. Kaneko, Y., Maruyama, S., Kadarusman, A., Ota, T., Ishikawa, M., Tsujimori, T., Ishikawa, A. and Okamoto, K. (2007) On-going orogeny in the outer-arc of the Timor-Tanimbar region, eastern Indonesia. Gondwana Research, v.11, p.218-233. https://doi.org/10.1016/j.gr.2006.04.013
  41. Keep, M. and Haig, D.W. (2010) Deformation and exhumation in Timor: Distinct stages of a young orogeny. Tectonophysics, v.483, p.93-111. https://doi.org/10.1016/j.tecto.2009.11.018
  42. KIGAM (2013) 1:25,000 Geologic Map and Explanation for the Fohorem Quadrangle. Project publication of the Korea International Cooperation Agency and the Secretariat of State for Natural Resources of Timor- Leste.
  43. Kimura, G. and Mukai, A. (1991) Underplated units in an accretionary complex: Melange of the Shimanto belt of eastern Shikoku, southwest Japan. Tectonics, v.10, p.31-50. https://doi.org/10.1029/90TC00799
  44. Kimura, G., Yamaguchi, A., Hojo, M., Kitamura, Y., Kameda, J., Ujiie, K., Hamada, Y., Hamahashi, M. and Hina, S. (2012) Tectonic melange as fault rock of subduction plate boundary. Tectonophysics, v.568-569, p.25-38. https://doi.org/10.1016/j.tecto.2011.08.025
  45. Kundu, B. and Gahalaut, V.K. (2011) Slab detachment of subducted Indo-Australian plate beneath Sunda arc, Indonesia. Journal of earth system science, v.120, p.193-204. https://doi.org/10.1007/s12040-011-0056-7
  46. Kusky, T.M., Bradley, D.C., Haeussler, P.J. and Karl, S. (1997) Controls on accretion of flysch and melange belts at convergent margins: evidence from the Chugach Bay thrust and Iceworm melange, Chugach accretionary wedge, Alaska. Tectonics, v.16, p.855-878. https://doi.org/10.1029/97TC02780
  47. Lash, G.G. (1987) Diverse melanges of an ancient subduction complex. Geology, v.15, p.652-655. https://doi.org/10.1130/0091-7613(1987)15<652:DMOAAS>2.0.CO;2
  48. Narr, W. and Suppe, J. (1991) Joint spacing in sedimentary rocks. Journal of Structural Geology, v.13, p.1037-1048. https://doi.org/10.1016/0191-8141(91)90055-N
  49. Orange, D.L. (1990) Criteria helpful in recognizing shearzone and diapiric melanges: examples from the Hoh acretionary complex, Olympic Peninsula, Washington. Geological Society of America Bulletin, v.102, p.935-951. https://doi.org/10.1130/0016-7606(1990)102<0935:CHIRSZ>2.3.CO;2
  50. Parkinson, C.D. (1996) The origin and significance of metamorphosed tectonic blocks in melanges: evidence from Sulawesi. Terra Nova, v.8, p.312-323. https://doi.org/10.1111/j.1365-3121.1996.tb00564.x
  51. Raymond, L.A. (1975) Tectonite and melange - a dis tinction. Geology, v.3, p.7-9. https://doi.org/10.1130/0091-7613(1975)3<7:TAMAD>2.0.CO;2
  52. Raymond, L.A. (1984) Classification of melanges. In: Raymond, L.A. (ed.) Melanges: Their nature, origin and significance. Geological Society of America Special Papers, v.198, p.7-20. https://doi.org/10.1130/SPE198-p7
  53. Rosidi, H.M.D., Suwitodirdjo, K. and Tjokrosapoetro, S. (1981) Geological Map of the Kupang-Atambua Quadrangles, 1:250,000. Geological Research and Development Centre, Bandung.
  54. Roosmawati, N. and Harris, R.A. (2009) Surface uplift history of th incipient Banda arc-continent collision: geology and syn-orogenic foraminifera of Rote and Savu Islands, Indonesia. Tectonophysics, v.479, p.95-110. https://doi.org/10.1016/j.tecto.2009.04.009
  55. Saleeby, J. (1984) Tectonic significance of serpentinite mobility and ophiolite melange. In: Raymond, L.A. (ed.) Melanges: Their nature, origin and significance. Geological Society of America Special Papers, v.198, p.153-168. https://doi.org/10.1130/SPE198-p153
  56. Sandiford, M. (2010) Complex Subduction. Nature Geosciences, v.3, p.518-820. https://doi.org/10.1038/ngeo928
  57. Shreve, R.L. and Cloos, M. (1986) Dynamics of sediment subduction, melange formation, and prism accretion. Journal of Geophysical Research, v.91, p.10229-10245. https://doi.org/10.1029/JB091iB10p10229
  58. Standley, C. and Harris, R. (2009) Banda forearc basement accreted to the NW Australian continental margin: A geochemical, age and structural analysis of the Lolotoi metamorphic complex of East Timor. Tectonophysics, v.479, p.66-94. https://doi.org/10.1016/j.tecto.2009.01.034
  59. Vannucchi, P., Maltman, A., Bettelli, G. and Clennell, B. (2003) On the nature of scaly fabric and scaly clay. Journal of Structural Geology, v.25, p.673-688. https://doi.org/10.1016/S0191-8141(02)00066-4
  60. von Rad, U. and Exon, N.F. (1983) Mesozoic-Cenozoic sedimentaryand volcanic evolution of the starved passive continentalmargin off NW Australia, In: Watkins, J.S. and Drake, C.L. (ed.) Studies in continental margin geology. American Association of Petroleum Geologists Memoir, v.34, p.253-281.
  61. Williams, P.R., Pigram, C.J., Dow, D.B. and Amiruddin (1984) Melange production and the importance of shale diapirism in accretionary terrains. Nature, v.309, p.145-146. https://doi.org/10.1038/309145a0
  62. Yamamoto, Y., Nidaira, M., Ohta, Y. and Ogawa, Y. (2009) Formation of chaotic rock units during primary accretion processes: examples from the Miura-Boso accretionary complex, central Japan. Island Arc, v.18, p.496-512. https://doi.org/10.1111/j.1440-1738.2009.00676.x
  63. Yassir, N. A. (1989) Mud Volcanoes and the Behaviour of Overpressured Clays and Silts. Ph.D. Thesis, University of London, 249p.