DOI QR코드

DOI QR Code

Gas Permeation Characteristics of PTMSP-Silica Composite Membranes Using Sol-Gel Process

졸-겔법에 의한 PTMSP-Silica 복합막의 기체 투과 특성

  • Yoon, Sung-Hyon (Department of Industrial Chemistry, Sang Myung University) ;
  • Lee, Hyun-Kyung (Department of Industrial Chemistry, Sang Myung University)
  • Received : 2014.12.12
  • Accepted : 2014.12.29
  • Published : 2014.12.31

Abstract

PTMSP-silica composite membranes were prepared by addition of 0, 15, 20, and 30 wt% TEOS (tetraethoxysilane), TMOS (tetramethoxysilane), MTMOS (methyltrimethoxysilane), and PTMOS (phenyltrimethoxysilane) contents to PTMSP using sol-gel process. The gas permeability of the composite membranes for $H_2$, $N_2$ and ideal selectivity for $H_2$ over $N_2$ were investigated as a function of alkoxysilane content. The permeabilities for $H_2$ and $N_2$ increased in the range of alkoxysilane contents 0~20 wt%, however decrease the range of 20~30 wt%. The ideal selectivities for $H_2$ over $N_2$ decreased in the range of TEOS and PTMOS contents 0~15 wt%, but increased in the range of 15~30 wt%. When compared to the upper bound of Robeson, PTMSP-silica composite membranes with TEOS content of 30 wt%, MTMOS content of 20 wt% and PTMOS content of 30 wt% turned out to be a simultaneous improvement in ideal selectivity and permeability.

PTMSP[Poly(1-trimethylsilyl-1-propyne)]에 TEOS (tetraethoxysilane), TMOS (tetramethoxysilane), MTMOS(methyltrimethoxysilane), 그리고 PTMOS (phenyltrimethoxysilane)의 함량을 0, 15, 20, 30 wt%로 달리하여 졸-겔법을 이용하여 PTMSP-silica 복합막을 제조하였다. PTMSP-silica 복합막의 알콕시실란 함량에 따른 $H_2$, $N_2$의 기체투과도와 $N_2$에 대한 $H_2$의 이상 선택도를 조사하였다. $H_2$$N_2$의 투과도는 알콕시실란 함량이 0~20 wt% 범위에서는 증가하다가 알콕시실란 함량이 20~30 wt% 범위에서는 감소하였다. $N_2$에 대한 $H_2$의 이상 선택도는 TEOS와 PTMOS의 함량이 0~15 wt% 범위에서는 감소하였으며, 15~30 wt% 범위에서는 다시 증가하였다. Robeson upper bound와 비교할 때, PTMSP-silica 복합막은 TEOS 함량이 30 wt%, MTMOS 함량이 20 wt% 그리고 PTMOS 함량이 30 wt%에서 투과도와 이상 선택도가 동시에 향상된 것으로 나타났다.

Keywords

References

  1. G. Polotskaya, M. Goikhman, I. Podeshvo, V. Kudryavtsev, Z. Pientka, L. Brozova, and M. Bleha, "Gas transport properties of polybenzoxazinoneimides and their prepolymers", Polym. J., 46, 3730 (2005). https://doi.org/10.1016/j.polymer.2005.02.111
  2. M. E. Rezac and B. Schoberl, "Transport and thermal properties of poly(ether imide)/acetylene-terminated monomer blends", J. Membr. Sci., 156, 211 (1999). https://doi.org/10.1016/S0376-7388(98)00346-9
  3. K. Tanaka, M. N. Islam, M. Kido, H. Kita, and K.-I. Okamoto, "Gas permeation and separation properties of sulfonated polyimide membranes", Polym. J., 47, 4370 (2006). https://doi.org/10.1016/j.polymer.2006.04.001
  4. K. Nagai, A. Higuchi, and T. Nakagawa, "Gas permeability and stability of poly(1-trimethylsilyl-1-propyne-co-1-phenyl-1-propyne) membranes", J. Polym. Sci.:Part B: Polym. Phys., 33, 289 (1995). https://doi.org/10.1002/polb.1995.090330214
  5. T. Masuda and E. Isobe, "Poly[1-(trimethylsilyl)-1-propyne]: A new high polymer synthesized with transition metal catalysts and characterized by extremely high gas permeability", J. Am. Chem. Soc., 105, 7473 (1983). https://doi.org/10.1021/ja00363a061
  6. E. O. Kim, "Appilcation of ceramic membrane", Membrane Journal, 3, 1 (1993).
  7. H. Y. Ha, S. W. Nam, and S. A. Hong, "Fabrication and application of inorganic membrane", Membrane Journal, 9, 63 (1999).
  8. H. Takaba, K. Mizukami, M. Kubo, A. Fahmi, and A. Miyamoto, "Permeation dynamics of small molecules through silica membranes: Molecular dynamics study", AIChE. J., 44, 1335 (1998). https://doi.org/10.1002/aic.690440611
  9. A. K. Prabhu and S. T. Oyama, "Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases", J. Membr. Sci., 176, 233 (2000). https://doi.org/10.1016/S0376-7388(00)00448-8
  10. G. Xomeritakis, S. Naik, C. M. Braunbarth, and C. J. Cornelius, "Organic-templated silica membranes I. Gas and vapor transport properties", J. Membr. Sci., 215, 225 (2003). https://doi.org/10.1016/S0376-7388(02)00616-6
  11. H. B. Park, C. H. Jung, Y. K. Kim, S. Y. Nam, S. Y. Lee, and Y. M. Lee, "Pyrolytic carbon membranes containing silica derived from poly(imide siloxane): the effect of siloxane chain length on gas transport behavior and a study on the separation of mixed gases", J. Membr. Sci., 235, 87 (2004). https://doi.org/10.1016/j.memsci.2004.01.025
  12. M. Jia, K. V. Peinemann, and R. D. Behling, "Molecular sieving effect of the zeolite-filled silicone rubber membrane in gas separation", J. Membr. Sci., 57, 289 (1991). https://doi.org/10.1016/S0376-7388(00)80684-5
  13. Y. E. Jeong and S. L. Hong, "Gas Permeation Properties of LDH-Filled PTMSP Composite Membranes", Membrane Journal, 22, 309(2012).
  14. P. Winberg, K. Desitter, C. Dotremont, S. Mullens, I. F. J. Vankelecom, and F. H. J. Maurer, "Free volume and interstitial mesopores in silica filled poly(1-trimethylsilyl-1-propyne) nanocomposites", Macromolecules, 38, 3776 (2005). https://doi.org/10.1021/ma047369j
  15. K. D. Sitter, P. Winberg, J. D'Haen, C. Dotremont, R. Leysen, J. A. Martens, S. Mullens, F. H. J. Maurer. and I. F. J. Vankelecom, "Silica filled poly(1-trimethylsilyl-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics", J. Membr. Sci., 278, 83 (2006). https://doi.org/10.1016/j.memsci.2005.10.046
  16. C. Joly, S. Goizet, J. C. Schrotter, J. Sanchez, and M. Escoubes, "Sol-gel polyimide-silica composite membrane : gas transport properties", J. Membr. Sci., 130, 63 (1997). https://doi.org/10.1016/S0376-7388(97)00008-2
  17. C. J. Cornelius and E. Marand, "Hybrid silica-polyimide composite membranes: gas transport properties", J. Membr. Sci., 202, 97 (2002). https://doi.org/10.1016/S0376-7388(01)00734-7
  18. H. B. Park, J. K. Kim, S. Y. Nam, and Y. M. Lee, "Imide-siloxane block copolymer/silica hybrid membranes: preparation, characterization and gas separation properties", J. Membr. Sci., 220, 59 (2003). https://doi.org/10.1016/S0376-7388(03)00215-1
  19. Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, and G. Wilkes, "Poly(amide-imide)/$TiO_2$ nano-composite gas separation membranes: fabrication and characterization", J. Membr. Sci., 135, 65 (1997). https://doi.org/10.1016/S0376-7388(97)00120-8
  20. D. Gomes, S. P. Nunes, and K. V. Peinemann, "Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)-silica nanocomposites", J. Membr. Sci., 246, 13 (2005). https://doi.org/10.1016/j.memsci.2004.05.015
  21. G. Philipp and H. Schmidt, "New materials for contact lenses prepared from Si- and Ti- alkoxides by the sol-gel process", J. Non-Crystalline Solids, 63, 283 (1984). https://doi.org/10.1016/0022-3093(84)90407-1
  22. J. H. Kim and Y. M. Lee, "Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes", J. Membr. Sci., 193, 209 (2001). https://doi.org/10.1016/S0376-7388(01)00514-2
  23. S. H. Zhong, C. F. Li, Q. Li, and X. F. Xiao, "Supported mesoporous $SiO_2$ membrane synthesized by sol-gel template technology", Sep. Purif. Technol., 32, 17 (2003). https://doi.org/10.1016/S1383-5866(03)00034-0
  24. S. H. Zhong, C. F. Li, and X. F. Xiao, "Preparation and characterization of polyimide-silica hybrid membranes on kieselguhr-mullite supports", J. Membr. Sci., 199, 53 (2002). https://doi.org/10.1016/S0376-7388(01)00676-7
  25. M. Adachi, Y. Suzuki, N. Kashiwagi, T. Isobe, and M. Senna, "Preparation and properties of polymer micropheres dispersed in a silica gel film", Colloids Surf. A: Physiochem. Eng. Aspects, 153, 617 (1998).
  26. C. J. Brinker and G. W. Scherer, "Sol-Gel Science: The physics and chemistry of sol-gel processing", Academic Press, San Diego (Chapter 3) (1990).
  27. T. Masuda, E. Isobe, and T. Higashimura, "Polymerization of 1-(trimethylsilyl)-1-propyne by halies of niobium(V) and tantalum(V) and polymer properties", Macromolecules, 18, 841 (1985). https://doi.org/10.1021/ma00147a003
  28. Y. S. Kang, E. M. Shin, B. S. Jung, and J. J. Kim, "Composite membranes of poly(1-trimethylsilyl-1-propyne) and poly(dimethylsiloxane) and their pervaporation properties for ethanol-ater mixture", J. Appl. Polym. Sci., 53, 317 (1994). https://doi.org/10.1002/app.1994.070530308
  29. C. Maxwell, "Treatise on Electricity and Magnetism", Oxford University Press, London (1873).
  30. R. M. Barrer, "Diffusion and permeation in heterogeneous media, in: J. Crank, G. S. Park (Eds.), Diffusion in Polymer", Academic Press, New York (1968).
  31. M. Knudsen, "The law of the molecular flow and viscosity of gases moving through tubes", Ann. Phys., 28, 75 (1909).
  32. D. W. Lee and S. T. Oyama, "Gas permeation characteristics of a hydrogen selective supported silica membrane", J. Membr. Sci., 210, 291 (2002). https://doi.org/10.1016/S0376-7388(02)00389-7
  33. L. M. Robeson, "Correlation of Separation Factor versus Permeability for Polymeric Membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J