DOI QR코드

DOI QR Code

Effect of femoral mechanical properties on primary stability of cementless total hip arthroplasty: a finite element analysis

  • Reimeringer, Michael (Laboratoire de recherche en imagerie et orthopedie,Departement de genie de la production automatisee, Ecole de technologie superieure) ;
  • Nuno, Natalia (Laboratoire de recherche en imagerie et orthopedie,Departement de genie de la production automatisee, Ecole de technologie superieure)
  • Received : 2014.03.05
  • Accepted : 2014.08.02
  • Published : 2014.09.25

Abstract

With the goal of increasing the survivorship of the prosthesis and anticipating primary stability problems of new prosthetic implants, finite element evaluation of the micromotion, at an early stage of the development, is mandatory. This allows assessing and optimizing different designs without manufacturing prostheses. This study aimed at investigating, using finite element analysis (FEA), the difference in the prediction of the primary stability of cementless hip prostheses implanted into a $Sawbones^{(R)}$ 4th generation, using the manufacturer's mechanical properties and using mechanical properties close to that of human bone provided by the literature (39 papers). FEA was carried out on the composite $Sawbones^{(R)}$ implanted with a straight taper femoral stem subjected to a loading condition simulating normal walking. Our results show that micromotion increases with a reduction of the bone material properties and decreases with the augmentation of the bone material properties at the stem-bone interface. Indeed, a decrease of the cancellous Young modulus from 155MPa to 50MPa increased the average micromotion from $29{\mu}m$ up to $41{\mu}m$ (+42%), whereas an increase of the cancellous Young modulus from 155MPa to 1000MPa decreased the average micromotion from $29{\mu}m$ to $5{\mu}m$ (-83%). A decrease of cortical Young modulus from 16.7GPa to 9GPa increase the average global micromotion from $29{\mu}m$ to $35{\mu}m$ (+33%), whereas an increase of the cortical Young modulus from 16.7GPa to 21GPa decreased the average global micromotion from $29{\mu}m$ to $27{\mu}m$ (-7%). It can also be seen that the material properties of the cancellous structure had a greater influence on the micromotion than the material properties of the cortical structure. The present study shows that micromotion predicted at the stem-bone interface with material properties of the $Sawbones^{(R)}$ 4th generation is close to that predicted with mechanical properties of human femur.

Keywords

Acknowledgement

Supported by : Natural Sciences and Engineering Research Council of Canada (NSERC)

References

  1. Abdul Kadir M.R., and Hansen U.N., (2007), "The effect of physiological load configuration on interface micromotion in cementless femoral stems", Jurnal Mekanical, 23, 50-61
  2. Abdul Kadir, M.R., Hansen, U.N., Hansen, U., Klabunde, R., Lucas, D. and Amis, A., (2008), "Finite element modeling of primary hip step stability: the effect of interference fit", J. Biomech., 41(3), 587-594. https://doi.org/10.1016/j.jbiomech.2007.10.009
  3. Augat, P., Link, T., Lang, T.F., Lin, J.C., Majumbar, S. and Genant, H.K., (1998), "Anisotropy of the elastic modulus of trabecular bone specimens from different anatomic locations", Med. Eng. Phys., 20(2), 124-131. https://doi.org/10.1016/S1350-4533(98)00001-0
  4. Baca, V., Horak, Z., Mikulenka, P. and Dzupa, V., (2008), "Comparison of an inhomogeneous orthotropic and isotropic materials models used for FE analyses", Med. Eng. Phys., 30(7), 924-930. https://doi.org/10.1016/j.medengphy.2007.12.009
  5. Baleani, M., Cristofolini, L. and Toni, A., (2000), "Initial stability of new hybrid fixation hip stem: Experimental measurement of implant-bone micromotion under torsional load in comparison with cemented and cementless stems", J. Biomed. Mater. Res., 50(4), 605-615. https://doi.org/10.1002/(SICI)1097-4636(20000615)50:4<605::AID-JBM17>3.0.CO;2-P
  6. Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J. and Duda, G.N., (2001), "Hip contact forces and gait patterns from routine activities", J. Biomech., 34(7), 859-871. https://doi.org/10.1016/S0021-9290(01)00040-9
  7. Birnbaum, K., Sindelar, R., Gartner, J.R., and Wirtz, D.C., (2002), "Material properties of trabecular bone structures", Surg. Radiol. Anat., 23(6), 399-407. https://doi.org/10.1007/s00276-001-0399-x
  8. Brown, S.J., Pollintine, P., Powell, D.E., Davie, M.W.J. and Sharp, C.A., (2002), "Regional differences in mechanical and material properties of femoral head cancellous bone in health and osteoarthritis", Calcified Tissue Int., 71(3), 227-234. https://doi.org/10.1007/s00223-001-2102-y
  9. Brown, T.D. and Ferguson Jr., A.B., (1980), "Mechanical property distributions in the cancellous bone of the human proximal femur", Acta Orthop. Scand., 51(3), 429-437. https://doi.org/10.3109/17453678008990819
  10. Brown, T.D. and Fergusson, A.B., (1978), "The developmnent of a computational stress analysis of the femoral head", J. Bone Joint Surg., 60(5), 619-629. https://doi.org/10.2106/00004623-197860050-00006
  11. Bryan, R., Mohan, P.S., Hopkins, A., Galloway, F., Taylor, M. and Nair, P.B. (2010), "Statistical modelling of the whole human femur incorporating geometric and material properties", Med. Eng. Phys., 32, 57-65. https://doi.org/10.1016/j.medengphy.2009.10.008
  12. Burgers, T.A., Mason, J., Niebur, G. and Ploeg, H.L., (2008), "Compressive properties of trabecular bone in the distal femur", J. Biomech., 41(1), 1077-1085. https://doi.org/10.1016/j.jbiomech.2007.11.018
  13. Burnstein, A.H., Reilly, D.T. and Martens, M., (1976), "Aging of bone tissue: Mechanical properties", J. Bone Joint Surg., 58(1), 82-86. https://doi.org/10.2106/00004623-197658010-00015
  14. Carter, D.R., Caler, W.E., Spengler, D.M. and Frankel, V.H., (1981), "Fatigue behavior of adult cortical bone: The influence of mean strain and strain range", Acta. Orthop. Scand., 52(2), 481-490. https://doi.org/10.3109/17453678108992136
  15. Courtney, A.C., Hayes, W.C. and Gibson, L.J., (1996), "Age-related differences in post-yield damage in human cortical bone. Experiment and model", J. Biomech., 29(11), 1463-1471. https://doi.org/10.1016/0021-9290(96)84542-8
  16. Cristofolini, L., Teutonico, A.S., Monti, L., Cappello, A. and Toni, A., (2003), "Comparative in vitro study on the long term performance of cemented hip stems: validation of a protocol to discriminate between "good" and "bad" designs", J. Biomech., 36(11), 1603-1615. https://doi.org/10.1016/S0021-9290(03)00191-X
  17. Cuppone, M., Seedhom, B.B., Berry, E., Ostell and A.E., (2004), "The longitudinal Young's modulus of cortical bone in the midshaft of human femur and its correlation with CT scanning data", Calcified Tissue Int., 74(3), 302-309. https://doi.org/10.1007/s00223-002-2123-1
  18. Dickenson, R.P., Hutton, W.C. and Stott, J.R.R., (1981), "The mechanical properties of bone in osteoporosis.", J. Bone Joint Surg., 63-B(2), 233-238.
  19. Duchemin, L., Bousson, V., Raossanaly, C., Bergot, C., Laredo, J.D., Skalli, W. and Mitton, D., (2008), "Prediction of mechanical properties of cortical bone by quantitative computed tomography", Med. Eng. Phys., 30(3), 321-328. https://doi.org/10.1016/j.medengphy.2007.04.008
  20. Duda, G.N., Heller, M., Albinger, J., Schultz, O., Schneider, E. and Claes, L. (1998), "Influence of muscle forces on femoral strain distribution", J. Biomech., 31(9), 841-846. https://doi.org/10.1016/S0021-9290(98)00080-3
  21. Evans, F.G., (1969), "The mechanical properties of bone", Artificial Limbs, 13, 37-48.
  22. Evans, F.G., (1976), "Mechanical properties and histology of cortical bone from younger and older men", The Anatomical Record, 185(1), 1-11. https://doi.org/10.1002/ar.1091850102
  23. Gardner, M.P., Chong, A.C.M., Pollock, A.G. and Wooley, P.H., (2010), "Mechanical evaluation of large-size fourth-generation composite femur and tibia models", Ann. Biomed. Eng., 38(3), 613-620. https://doi.org/10.1007/s10439-009-9887-7
  24. Garelick, G., Karrholm, J., Rogmark, C., and Hernerts, P., (2009), "Swedish hip arthroplasty register annual report. Sweden: Department of orthopaedics", Sahlgrenska University Hospital, Sweden.
  25. Goldstein, S.A., (1987), "The mechanical properties of trabecular bone dependance on anatomic locationand function", J. Biomech., 20(11-12), 1055-1061. https://doi.org/10.1016/0021-9290(87)90023-6
  26. Grant, J.A., Bishop, N.E., Gotzen, N., Specher, C., Honl, M. and Morlock, M. (2007), "Artificial composite bone as a model of human trabecular bone: the implant-bone interface", J. Biomech., 40(5), 1158-1164. https://doi.org/10.1016/j.jbiomech.2006.04.007
  27. Heiner, A.D., (2008), "Structural properties of fourth-generation composite femurs and tibias", J. Biomech., 40(15), 3615-3625.
  28. Helgasson, B., Perilli, E., Schileo, E., Taddei, F., Brynjolfsson, S. and Viceconti, M., (2008), "Mathematical relationships between bone density and material properties: A literature review", Clin. Biomech., 23(2), 135-146. https://doi.org/10.1016/j.clinbiomech.2007.08.024
  29. Hong, J., H. Cha, Y. Park, S. Lee, G. Khang and Y. Kim, (2007), "Elastic moduli and Poisson's ratios of microscopic human femoral trabeculae", 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing., Ljubljana, Springer, Slovenia.
  30. Howard, J.L., Hui, A.J., Bourne, R.B., McCalden, R.W., McDonald, S.J. and Rorabeck, C.H., (2004), "A quantitative analysis of bone support comparing cementless tapered and distal fixation total hip replacement", J. Arthroplasty., 19(3), 266-273. https://doi.org/10.1016/j.arth.2003.09.011
  31. Jiang, Y., Zhao, J., Augat, P., Ouyang, X., Lu, Y., Majumbar, S. and Genant, H.K., (1998), "Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: Relation to biomechanical properties", J. Bone Miner. Res., 13(11), 1783-1790. https://doi.org/10.1359/jbmr.1998.13.11.1783
  32. Jirousek, O., (2012), "Nanoindentation of human trabecular bone-tissue mechanical properties compared to standard engineering test methods", Chapter 11, InTech, Rijeka, Croatia.
  33. Joshi, M.G., Advani, S.G., Miller, F. and Santare, M.H., (2000), "Analysis of a femoral hip prosthesis designed to reduce stress shielding", J. Biomech., 33(12), 1655-1662. https://doi.org/10.1016/S0021-9290(00)00110-X
  34. Kaneko, T.S., Pejcic, M.R., Tehranzadeh, J., Keyak, J.H., (2003), "Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions", Med. Eng. Phys., 25(6), 445-454. https://doi.org/10.1016/S1350-4533(03)00030-4
  35. Kassi, J.P., Heller, M.O., Stoeckle, U., Perka, C.and Duda, G.N., (2005), "Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro", J. Biomech., 38(5), 1143-1154. https://doi.org/10.1016/j.jbiomech.2004.05.023
  36. Keaveny, T.M., Morgan, E.F. and Yeh, O.C., (2004), "Bone mechanics", Standard Handbook of Biomedical Engineering and Design - Chapter 8, McGraw-Hill Companies, New York, USA.
  37. Keller, T.S., (1994), "Predicting the compressive mechanical behavior of bone", J. Biomech., 27(9), 1159-1168. https://doi.org/10.1016/0021-9290(94)90056-6
  38. Keller, T.S., Mao, Z. and Spengler, D.M., (1990), "Young's modulus, bending strength, and tissue physical properties of human compact bone", J. Orthopaed. Res., 8(4), 592-603. https://doi.org/10.1002/jor.1100080416
  39. Kulkarni, M.S. and Sathe, S.R., (2008), "Experimental determination of material properties of cortical cadaveric femur bone", Trends Biomater. Artif. Organs, 9-15.
  40. Li, B. and Aspden, R., (1997), "Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis", J. Bone Miner. Res., 12(4), 641-651. https://doi.org/10.1359/jbmr.1997.12.4.641
  41. Lotz, J.C., Gerhart, T.N. and Hayes, W.C. (1991), "Mechanical properties of metaphyseal bone in the proximal femur", J. Biomech., 24(5), 317-329. https://doi.org/10.1016/0021-9290(91)90350-V
  42. Majumbar, S., Kothari, M., Augat, P., Newitt, D.C., Link T.M., Lin, J.C., Lang, T., Lu, Y. and Genant, H.K., (1998), "High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties", Bone, 22(5), 445-454. https://doi.org/10.1016/S8756-3282(98)00030-1
  43. McCalden, R.W., McGeough, J.A., Barker, M.B. and Court-Brown, C.M., (1993), "Age-related changes in the tensile properties of cortical bone", J. Bone Joint Surg., 75(8), 1193-1205. https://doi.org/10.2106/00004623-199308000-00009
  44. McKellop, H., Ebramzadeh, E. , Niederer, P.G. and Sarmiento, A., (2005), "Comparison of the stability of press-fit hip prosthesis femoral stems using a synthetic model femur", J. Orthopaed. Res., 9(2), 297-305.
  45. Mjoberg, B., (1991), "Fixation and loosening of hip prostheses. A review", Acta. Orthop. Scand., 62(2), 500-508. https://doi.org/10.3109/17453679108996658
  46. Morgan, E.F., Yeh, O.C., Chang, W.C. and Keaveny, T.M., (2001a), "Nonlinear behavior of trabecular bone at small strains", J. Biomech. Eng., 123(1), 1-9. https://doi.org/10.1115/1.1338122
  47. Morgan, E.F. and Keaveny, T.M., (2001b), "Dependence of yield strain of human trabecular bone on anatomic site", J. Biomech., 34(5), 569-577. https://doi.org/10.1016/S0021-9290(01)00011-2
  48. Morlock, M., Schneider, E., Blhum, A., Vollmer, M., Bergmann, G., Muller, V. and Honl, M., (2001), "Duration and frequency of everyday activities in total hip patients", J. Biomech., 34(7), 873-881. https://doi.org/10.1016/S0021-9290(01)00035-5
  49. Nazarian, A., Muller, J., Zurakowski, D., Muller and R. Snyder, B.D., (2007), "Densitometric, morphometric, and mechanical distributions in the human proximal femur", J. Biomech., 40(11), 2573-2579. https://doi.org/10.1016/j.jbiomech.2006.11.022
  50. Nyman, J.S., Roy, A., Shen, X., Acuna, R.L., Tyler, J.H. and Wang, X., (2006), "The influence of water removal on the strength and toughness of cortical bone", J. Biomech., 39(5), 931-938. https://doi.org/10.1016/j.jbiomech.2005.01.012
  51. Ohman, C., Baleani, M., Perilli, E., Dall'Ara, E., Tassani, S., Baruffaldi F. and Viceconti, M., (2007), "Mechanical testing of cancellous bone from the femoral head: Experimental errors due to off-axis measurements", J. Biomech., 40(11), 2426-2433. https://doi.org/10.1016/j.jbiomech.2006.11.020
  52. Ostbyhaug, P.O., Klaksvik, J., Romundstad, P. and Aamodt, A., (2010), "Primary stability of custom and anatomical uncemented femoral stems: a method for three-dimensional in vitro measurement of implant stability", Clin. Biomech., 25(4), 318-324. https://doi.org/10.1016/j.clinbiomech.2009.12.012
  53. Pancanti, A., Bernakiewicz, M. and Viceconti, M., (2003), "The primary stability of a cementless stem varies between subjects as much as between activities", J. Biomech., 36(6), 777-785 https://doi.org/10.1016/S0021-9290(03)00011-3
  54. Papini, M., Zdero, R., Schemitsch, E.H. and Zalzal, P., (2007), "The biomechanics of human femurs in axial and torsional loading: Comparison of finite element analysis, human cadaveric femurs, and synthetic femurs", J. Biomech. Eng., 129(1), 12-19. https://doi.org/10.1115/1.2401178
  55. Park, Y., Choi, D.O., Hwang, D.S. and Yoon, Y.S., (2008), "Primary stability of cementless stem in THA improved with reduced interfacial gap", J. Biomech. Eng., 130(2), 1-7.
  56. Park, Y., Choi, D.O., Hwang, D.S. and Yoon, Y.S. (2009), "Statistical analysis of interfacial gap in a cementless stem FE model", J. Biomech. Eng., 131(2), 1-8.
  57. Peng, L., Bai, J., Zeng, X. and Zhou, Y., (2006), "Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions", Med. Eng. Phys., 28(3), 227-233. https://doi.org/10.1016/j.medengphy.2005.06.003
  58. Pilliar, R.M., Lee, J.M. and Maniapoulos, C., (1986), "Observation of the effect of movement on bone ingrowth into porous-surfaced implants", Clin. Orthop. Relat. Res., 208, 108-113.
  59. Pivec, R., Johnson, A.J., Mears, S.C. and Mont M.A., (2012), "Hip arthroplasty", Lancet, 380(9855), 1768-1777. https://doi.org/10.1016/S0140-6736(12)60607-2
  60. Reilly, D.T. and Burnstein, A.H., (1974), "The mechanical properties of cortical bone", J. Bone Joint Surg., 56(5), 1001-1022. https://doi.org/10.2106/00004623-197456050-00012
  61. Reimeringer, M., Gardan, N. Gardan, Y. and Ugur, H., (2008), "CADFORSIM: Rules to improve the mesh quality", Proceedings of the 7th International Symposium on Tools and Methods for Concurent Engineering (TMCE2008), Izmir, Turkey.
  62. Reimeringer, M., Nuno, N., Desmarais-Trepanier, C., Lavigne, M. and Vendittoli, P.A., (2013a), "The influence of uncemented femoral stem length and design on its primary stability: a finite element analysis", Comput. Methods Biomech. Biomed. Eng., 16(11), 1221-1231. https://doi.org/10.1080/10255842.2012.662677
  63. Reimeringer M., Nuno, N., (2013b), "Evaluation of the micromotion as a function of the area where press-fit is applied for a cementless hip implant", Bone Joint J., 95-B no. SUPP 34, 158.
  64. Rohlmann, A., Zilch, H., Bergmann, G. and Kolbel R., (1980), "Material properties of femoral cancellous bone in axial loading Part 1: Time independant properties", Arch. Orthop. Trauma Surg., 97(4), 95-102. https://doi.org/10.1007/BF00450930
  65. Sawbones (2013), http://www.sawbones.com/Content/AboutUs_SawbonesCatalog
  66. Schoenfeld, C.M., Lautenschlager, E.P. and Meyer, P.R., (1974), "Mechanical properties of human cancellous bone in the femoral head", Med. Biol. Eng., 12(3), 313-317. https://doi.org/10.1007/BF02477797
  67. Sitzer, A., Wendlandt, R., Barkhausen, J., Kovacs, A., Weyers, I. and Schultz, A.P., (2012), "Determination of material properties related to quantitative CT in human femoral bone for patient specific finite element analysis - A comparison of material laws", Webmed Central Orthopaedics, 3(7), 1-12.
  68. Speirs, A.D., Heller, M.O., Duda, G.N. and Taylor, W.R., (2007a), "Physiologically based boundary conditions in finite element modelling", J. Biomech., 40(10), 2318-2323. https://doi.org/10.1016/j.jbiomech.2006.10.038
  69. Speirs, A.D., Heller, M.O., Taylor, W.R., Duda, G.N. and Perka, C., (2007b), "Influence of changes in stem postioning on femoral loading after THA using a short-stemmed hip implant", Clin. Biomech., 22(4), 431-439. https://doi.org/10.1016/j.clinbiomech.2006.12.003
  70. Thielen, T., Maas, S., Zuerbes, A., Waldmann, D., Anagnostakos, K.and Kelm, J., (2009), "Mechanical behaviour of standardized, endoskelton-including hip spacers implanted into composite femurs", Int. J. Med. Sci., 6(5), 280-286.
  71. Tomsen, M.N., Breusch, S.J., Aldinger P.R., Gotz, W., Lahmer, A., Honl, M., Birke, A. and Nagel, H., (2002), "Robotically-milled bone cavities - A comparison with hand broaching in different types of cementless hip stems", Acta Orthop. Scand., 73(4), 379-385. https://doi.org/10.1080/00016470216317
  72. Turner, C.H., Rho, J., Takano, Y., Tsui, T. and Pharr, G.M., (1999), "The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques", J. Biomech., 32(4), 437-441. https://doi.org/10.1016/S0021-9290(98)00177-8
  73. Viceconti, M., Monti, L., Muccini, R., Bernakiewicz, M. and Toni, A., (2001), "Even a thin layer of soft tissue may compromise the primary stability of cementless hip stems", Clin. Biomech., 16(9), 765-775. https://doi.org/10.1016/S0268-0033(01)00052-3
  74. Viceconti, M., Casali, M., Massari, M., Cristofolini, L., Bassini, S. and Toni, A., (1996), "The standardized femur program proposal for a reference geometry to be used for the creation of finite element models of the femur", J. Biomech., 29(9), 1241. https://doi.org/10.1016/0021-9290(95)00164-6
  75. Viceconti, M., Muccini, R., Bernakiewicz, M., Baleani, M. and Cristofolini, L., (2000), "Large-sliding contact elements accurately predicts levels of bone-implant micromotion relevant to osteointegration", J. Biomech., 33(12), 1611-1618. https://doi.org/10.1016/S0021-9290(00)00140-8
  76. Wall, J.C., Chatterji, S.K. and Jeffery, J.W., (1979), "Age-related changes in the density and tensile strength of human femoral cortical bone", Calcified Tissue Int., 27(2), 105-108. https://doi.org/10.1007/BF02441170
  77. Wirtz, D.C., Schiffers, N., Pandorf, T., Radermacher, K., Weichert, D. and Forst, R., (2000), "Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur", J. Biomech., 33(10), 1325-1330. https://doi.org/10.1016/S0021-9290(00)00069-5
  78. Wong, A.S., New, A.M.R., Isaacs, G. and Taylor, M., (2005), "Effect of bone material properties on the initial stability of a cementless hip stem: a finite element study", Proc. Inst. Mech. Eng. H., 219(4), 265-275.
  79. W.u, L.D., Hahne, H.J. and Hassenpflug, J., (2004), "The dimensional accuracy of preparation of femoral cavity in cementless total hip arthroplasty", J. Zheijiang Univ. Sci., 5(10), 1270-1278. https://doi.org/10.1631/jzus.2004.1270

Cited by

  1. No effect of femoral offset on bone implant micromotion in an experimental model vol.102, pp.3, 2016, https://doi.org/10.1016/j.otsr.2016.01.010
  2. The influence of contact ratio and its location on the primary stability of cementless total hip arthroplasty: A finite element analysis vol.49, pp.7, 2016, https://doi.org/10.1016/j.jbiomech.2016.02.031
  3. On the Two-Dimensional Simplification of Three-Dimensional Cementless Hip Stem Numerical Models vol.139, pp.3, 2017, https://doi.org/10.1115/1.4035368
  4. Measures of micromotion in cementless femoral stems-review of current methodologies vol.3, pp.2, 2014, https://doi.org/10.12989/bme.2016.3.2.085