Acknowledgement
Supported by : Russian Foundation
References
-
Aloshyna, M., Sivakumar, S., Venkataramanan, M., Brolo, A.G. and van Veggel, F.C.J.M. (2007), "Significant suppression of spontaneous emission in
$SiO_{2}$ photonic crystals made with Tb3+-doped LaF3 nanoparticles", J. Phys. Chem., 111, 4047. - Bardyshev, I.I., Mokrushin, A.D., Pribylov, A.A., Samarov, E.N., Masalov, V.M., Karpov, I.A. and Emelchenko, G.A. (2006), "Porous structure of synthetic opals", Colloid J., 68(1), 20-25. https://doi.org/10.1134/S1061933X06010029
- Biswas, R., Chan, C.T., Sigalas, M., Soukoulis, C.M. and Ho, K.M. (1996), Photonic band gap materials, Ed. C.M. Soukoulis, Dordrecht, Kluwer.
- Bogomolov, V.N. (1978), "Liquids in ultrathin cannals, (Thread-like and cluster crystals)", Uspechi Physical Sciences, 124, 171. (in Russian)
- Bogomolov, V.N., Gaponenko, S.V., Germanenko, I.N., Kapitonov, A.M., Petrov, E.P., Gaponenko, N.V., Prokofiev, A.V., Ponyavina, A.N., Silvanovich, N.I. and Samoilovich, S.M. (1997), "Photonic band gap phenomenon and optical properties of artificial opals", Phys. Rev. E, 55, 7619. https://doi.org/10.1103/PhysRevE.55.7619
-
Bogomolov, V.N., Kurdyukov, D.A., Prokofiev, A.V. and Samoilovich, S.M. (1996), "Effect of a photonic band gap in the optical range on solid-state
$SiO_{2}$ cluster lattices - opals", Pisma Zh. Eksp. Teor. Fiz., 63(7), 520-525. - Bohn, J.J., Ben-Moshe, M., Tikhonov, A., Qu, D., Lamont, D.N. and Asher, S.A. (2010), "Charge stabilized crystalline colloidal arrays as templates for fabrication of non-close-packed inverted photonic crystals", J. Colloid Interf. Sci., 344, 298-307. https://doi.org/10.1016/j.jcis.2010.01.021
- Chabanov, A.A., Jun, Y. and Norris, D.J. (2004), "Avoiding cracks in self-assembled photonic band-gap crystals", Appl. Phys. Lett., 84, 3573. https://doi.org/10.1063/1.1737066
- Darragh, P.J., Gaskin, A.J., Terrell, B.C. and Sanders, J.V. (1966), "Origin of precious opal", Nature, 209, 13. https://doi.org/10.1038/209013a0
- Denkov, N.D., Velev, D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, J.H. and Nagayama, K.T. (1992), "Mechanism of formation of two-dimensional crystals from latex particles on substrates", Langmuir, 8, 3183. https://doi.org/10.1021/la00048a054
- Gajiev, G.M., Golubev, V.G., Kurdyukov, D.A., Medvedev, A.V., Pevtsov, A.B., Sel'kin, A.V. and Travnikov, V.V. (2005), "Bragg reflection spectroscopy of opal-like photonic crystals", Phys. Rev. B, 72, 205115. https://doi.org/10.1103/PhysRevB.72.205115
- Golubev, V.G., Kosobukin, V.A., Kurdyukov, D.A., Medvedev, A.V. and Pevtsov, A.B. (2001), "Physics and technique of semiconductors", 35, 710. (in Russian)
- Jiang, P., Bertone, J.F., Hwang, K.S., and Colvin, V.L. (1999), "Single-crystal colloidal multilayers of controlled thickness", Chem. Mater., 11, 2132. https://doi.org/10.1021/cm990080+
- Jones, J.B. and Segnit, E.R. (1969), "Water in sphere-type opal ", Mineral. Mag., 37, 357. https://doi.org/10.1180/minmag.1969.037.287.07
- Karpov, I.A., Samarov, E.N., Masalov, V.M., Bozhko, S.I. and Emel'chenko, G.A. (2005), "The intrinsic structure of spherical particles of opal", Phys. Solid State, 47(2), 347-351. https://doi.org/10.1134/1.1866417
- Kim, S., Mitropoulos, A.N., Spitzberg, J.D., Tao, H., Kaplan, D.L. and Omenetto, F.G. (2012), "Silk inverse opals", Nature Photonics, 6, 818. https://doi.org/10.1038/nphoton.2012.264
- Krauss, T.F. (1998), "Photonic crystals and microstructures", IEE Proc. Optoelectron, 145, 372. https://doi.org/10.1049/ip-opt:19982463
-
Masalov, V.M., Aldushin, K.A., Dolganov, P.V. and Emel'chenko, G.A. (2001), "
$SiO_{2}$ - Microspheres Ordering in 2D Structures", Phys. Low-Dim. Struct., 5/6, 45. - Masalov, V.M., Sukhinina, N.S. and Emel'chenko, G.A. (2011), "Colloidal particles of silicon dioxide for the formation of opal-like structures", Phys. Solid State., 539(6), 1135-1139.
- Masalov, V.M., Sukhinina, N.S., Kudrenko, E.A. and Emelchenko, G.A. (2011), "Mechanism of formation and nanostructure of Stober silica particles", Nanotechnology, 22, 275.
- Menshikova, A.Y., Shevchenko, N.N., Bugakov, I.V., Yakimansky, A.V. and Sel'kin, A.V. (2011), "Direct opal-like structures consisting of monodisperse polymer particles and synthesis of the related inverse structures", Phys. Solid State., 53, 1155-1160. https://doi.org/10.1134/S1063783411060230
- Meseguer, F., Blanco, A., Miguez, H., Garcia-Santamaria, F., Ibisate, M. and Lopez, C., (2002), "Synthesis of inverse opals", Colloid. Surface. A, 202, 281-290. https://doi.org/10.1016/S0927-7757(01)01084-6
- Miguez, H., Meseguer, F., Lopez, C., Lopez-Tejeira, F. and Sanchez-Deheza, J. (2001), "Synthesis and photonic bandgap characterization of polymer inverse opals", Adv. Mater., 13, 393. https://doi.org/10.1002/1521-4095(200103)13:6<393::AID-ADMA393>3.0.CO;2-4
- Prevo, B.G. and Velev, O.D. (2004), "Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions", Langmuir, 20, 2099. https://doi.org/10.1021/la035295j
- Ralchenko, V.G., Sovyk, D.N., Bolshakov, A.P., Homich, A.A, Vlasov, I.I., Kurdyukov, D.A., Golubev, V.G. and Zakhidov, A.A. (2011), "Diamond direct and inverse opal matrices produced by chemical vapor deposition", Phys. Solid. State, 53(6), 1131-1134. https://doi.org/10.1134/S106378341106028X
- Samarov, E.N., Mokrushin, A.D., Masalov, V.M., Abrosimova, G.E. and Emel'chenko, G.A. (2006), "Structural modification of synthetic opals during thermal treatment", Phys. Solid. State, 48(7), 1280-1283. https://doi.org/10.1134/S1063783406070109
- Sander, J.V. (1964), "Colour of precious opal", Nature, 204, 1151-1153. https://doi.org/10.1038/2041151a0
- Scharrer, M., Wu, X., Yamilov, A., Cao, H. and Chang, R.P.H. (2005), "Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition", Appl. Phys. Lett., 86, 151113. https://doi.org/10.1063/1.1900957
- Stober, W., Fink, A. and Bohn, E. (1968), "Controlled growth of monodisperse silica spheres in the micron size range ", J. Colloidal Interface Sci., 26, 62. https://doi.org/10.1016/0021-9797(68)90272-5
Cited by
- Nanoporous SiO2 based on annealed artificial opals as a favorable material platform of terahertz optics vol.10, pp.9, 2014, https://doi.org/10.1364/ome.402185